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Abstract. As technology advances, modern networks rapidly evolve.
Capturing the dynamic nature of networks and predicting their evolution
has been a common focus in network science. This research investigates
a social network’s temporal evolution, and how metrics and descriptors
during its creation compare a snap shot in time during the network’s
growth to the known state of the final network. As social media is a pri-
mary way of communication, Twitter data collection provide real traces
for this study that focuses on the ability to determine if knowing net-
work’s early metrics provide an accurate prediction of the this final net-
work. This can then be extended to monitor other similar events as they
are happening. However, this does not generalize arbitrary social evens.
Specifically, this research utilizes data from Twitter feeds regarding the
Paris terrorist attacks (#ParisAttacks) in November 2015, and focuses
on the analysis of k-Core, Betweenness centrality, and community com-
parison as the network grows. The topology of the overall network after
24 hours from the time of the first post provides the known “end-state”
that we compare against.
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1 Introduction

On the evening of 13 November 2015, six coordinated terrorist attacks were
launched against the civilian populace in Paris, France 1.

These attacks killed 130 Parisians and wounded another 368. The city of
lights lived in fear that night of continued violence, desperate to know if loved
ones were still alive. The city was shut down with the citizens and tourists
sheltering in homes and hotels. During this time, many of these individuals took
to social media forums like Facebook and Twitter to communicate, find loved
ones, and share news of the attacks that they were experiencing first hand.
Through this messaging, the world became involved in a singular world event.

For over 24 hours, the social media platform Twitter was used by millions
across the world to distribute news of the attacks. Many of these tweets shared



Fig. 1. The locations of the 6 attacks [20]

information, broadcasted a reaction, or responded to the attacks. Twitter ac-
count holders used the trending message qualifier #ParisAttacks to join their
individual message to the overall collective response and discussion of the at-
tacks.

These messages, or “tweets”, are constructed of three parts in building an
event based social network: author/sender, receiver, and time. An event’s occur-
rence results in only a small group of Twitter users tweeting about the event until
an informal trending topic handle is assigned that is soon adopted by everyone.
Twitter data for the night of 13 November and the ensuing 24 hours recorded
tweets referencing the trending topic #ParisAttacks. This handle provided the
world of Twitter account users the ability to receive and pass on information and
news regarding the event. After 24 hours there were more than 86,000 people
receiving and then transmitting #ParisAttacks. Netlytic [8], a social network
analysis tool, was used to collect the #ParisAttacks tweets. The resultant net-
work from our data is shown in Figure 2.

This network of Twitter users communicating about a single event over time
has the ability to provide insights on the evolution of information networks.
Specifically, this paper studies the characteristics of the entire network at the 24th

hour of growth and attempts to identify at what period in time, beginning at hour
1, does the end-state network take its final form. The hypothesis of this paper
speculates that when this network is observed over time that the development of
its k-core will reveal the gradual framing of the main elements and characteristics
of the end-state network. The observation of these characteristics can aid in
further academic endeavors studying how networks grow over time.

The remaining of the paper is organized as follows. In Section 2 we introduce
the relevant definitions and literature review for our study. In Section 3 we
introduce our methodology, whose results and analysis on the three data sets are
presented in Section 4. We then present the conclusion of our paper in Section 5.



Fig. 2. End-state Network

2 Relevant Definitions and Literature review

In Analyzing network’s structure, researchers have considered three different
levels of analysis. The global level is studied through the macroscale type analysis
(like degree distribution), the detailed level is through the microscale analysis
(such as degree), and the mesoscale such as k-core and communities that we will
use in the current research.

A key concept used in the current research is the k-core of a network. Graph
theory introduces locally dense structures (such as components and
cliques [12, 24, 9]) which have been further extended in complex networks to k-
clans, k-clubs, k-clique-communities, diplex k-plexes or k-core since early 1900s [4,
14, 12, 16, 17, 18, 21, 25]. The k-core of a network is the subset of nodes that
have k or more relationships in the k-core [23, 6]. For a review article on core-
periphery structure see [5].

Some of the above mentioned locally dense structures were then used for
defining communities in networks. While there is not a widely accepted definition
of communities, traditional community detection researchers use Radicchi [19]
definition of community as a general concept as a sub-network or subset of
vertices with more internal edges to the community compared to edges between
communities. This definition we will be using in the current research through
the use of Louvain method [2] of maximizing modularity as it is one of the
more popular community detection algorithms in network science. While the
Louvain method is not deterministic, we used Gephi’s implementation and varied
the resolution until the maximum modularity value was achieved. Once these
parameters were identified, the communities were defined. The modularity of a
network’s partition into communities measures the goodness of the particular
partition by comparing it to a partition of a similar size (node and edge count)



random network [15]. That is, the modularity is the result of summing aij − kikj

2m
for all pairs (i, j) in the same community. Community detection is an extremely
active research area with many modularity based algorithms.

The study of social media, including Twitter, and its associated network
structures is a broad and developing area of research. The pervasiveness and gen-
erous amount of data in this area makes for most interesting academic research
and consideration. As expected, researchers have considered Twitter analysis of
disaster events, none that we could found on the #ParisAttacks.

The devastating earthquake and tsunami that hit Japan in 2011 claimed the
lives of thousands of people. The authors of [1] analyze tweets sent immediately
after the disaster. The focus of their analysis is on the types of messages people
sent based on their location in Japan.

The authors of [13] analyze Twitter activity related to the 2010 earthquake
in Chile. As the earthquake began, social media platforms were used in a similar
manner: to connect, share information, and form a collective conversation. The
paper compares the way news versus rumors are spread about the earthquake via
Twitter, and they show that it is possible to detect rumors. Their main metric
is the average number of tweets versus the number of followers and followees.

In [11] the authors analyze Twitter information flows during the 2011 Tunisian
and Egyptian uprisings. Tweet senders are classified into ”actor types”, and the
paper looks at how different ”actor types” produce and pass information over
Twitter.

The authors of [27] also analyze Twitter activity having to do with a severe
thunderstorm at the 2010 Pukkelpop music festival in Hasselt, Belgium. The
growth of tweets relating to the incident is documented, as well as the number
of original tweets vs retweets. The paper finds that tweets from reliable sources
received more retweets regardless of the content.

Evolutionary clustering and community detection approaches designed for
dynamic social networks have been considered by [3], [7], [10], and [26]. The
papers analyze the evolution of clustering obtained by using a fixed temporal
smoothness penalty to the cost function of a static clustering method. These
were applied to (a) the established k-means clustering problem, (b) a proposed
evolutionary spectral clustering problem, and (c) FacetNet discovering commu-
nities relying on maximum a posteriori estimation based on observed networked
data and a given prior distribution.

In [28], the authors consider an adaptive methodology for communities. They
mention that statistical clustering is generally outperformed by evolutionary
clustering since it produces clustering results aligning with long-term trends
yet robust to short-term perturbations. Their algorithm adaptively estimates
the smoothing parameter using shrinkage estimation, based on näıve estimate.
The strength of their framework is that it extends a variety of static clustering
algorithms, including hierarchical, k-means, and spectral clustering, into evolu-
tionary clustering algorithms.

The authors of [22] discuss methods of extracting news from tweets. They
use a Näıve Bayes classifier to separate news and non-news. The news tweets are



partitioned into communities that posses similar characteristics using modularity
measurements. In the current research, we a modularity based clustering into
communities algorithm, different than the ones used in the references above.

3 Methodology

To study how Twitter is used in an emergency, posts that used the hashtag
#ParisAttacks were collected for a 24-hour period. The terrorist attacks oc-
curred from 21: 20 to 21: 53 on 15 November 2015 and the period for which data
was collected covered 02: 00 on 16 November to 02: 00 on 17 November 2015.
A network was created by representing each Twitter user as a node and di-
rected edges to indicate a user referenced or mentioned another user in a post.
we identified the following potential metrics to capture the network as it grew:
k-Core (and the core is identified by the highest value of k before the k + 1-core
vanishes), number of communities, centrality, and betweenness.

The end-state Twitter network which tracked the use of #ParisAttacks grew
to a final state of 86, 821 nodes and 105, 601 directed edges in the 24 hours we
captured. The edges represent tweeted or mentioned users in the network. We
thus obtain a directed network with weights on the arcs, whose relevant metrics
of the end-state network are presented in Table 1.

Average Node Degree 2.433

Maximum Degree 2596

Average Path Length 6.418

Diameter 25

Modularity .9521

Average Clustering Coefficient 0.084

Number of Communities 6,829

The Core a k-core for k = 13
Table 1. Ground Truth #ParisAttacks Network’s Attributes

The network data was divided into two-hour segments of time and reviewed
for the above characteristics to monitor change as the network grew to the state
shown in Table 1. This temporal analysis for the network was completed by
incrementally adding two hour segments of data gradually building a full net-
work. The time slice period was chosen for ease in managing the data amounts
and because of the hypothesis that the end-state network characteristics would
become cemented early in the network’s growth.

The method of study focuses on quantifying each time period at the num-
ber of nodes, edges, k-Core, centrality and communities in comparison to the
end-state network. These attributes are then used to compare across all time
increments. Communities and centrality are reviewed with a second parameter
for comparison.



The top ten nodes with the highest betweenness centrality scores are recorded
for each time period and compared to the end-state network’s top ten. The
betweeness centrality similarity as the network grows is the percent of nodes
common to both networks compared. Due to the large number of communities
in the network, the study focuses on the top six communities for each time
period which account for 73% of the data. As communities align differently at
each time-step, an adaptive method was needed: the largest six communities
are therefore appraised for their network representation. In other words, what
percentage of the total number of nodes in the network at the given time-stamps
are members of the six largest communities. These characteristics will then be
compared over time to observe possible changes as the network expands.

4 Results and Analysis

To keep track of the network’s growth the number of nodes, edges, and com-
munities were tracked. As Twitter users mention one or more other users, the
rate of growth in number of edges and nodes were both nearly linear as shown
in Figure 3.

Fig. 3. Network Growth Over 24 Hours

We believe this is due to the events all happening in the beginning in a short
amount of time, which constantly brings the attention to the event. On the other
hand, if events would have been spread out over the 24 hour period, we would
have expected exponential increases. This is supported by the slow increase in
the number of communities, which began to plateau at the end of the 24-hours.
It is best represented by a negative second order polynomial with an R-squared
value of over 0.999 as shown in Figure 3.

The end-state network has a core identified by the 13-core, consisting of ma-
jor news broadcasting stations: French President Hollande, French Newspaper,



Fig. 4. End-state communities labels (numbers) in the Core of the Network

German Newspaper, ABC News, The Guardian, Reuters News, AFP News, BBC
News, New York Times, United Nations, Time Magazine, CNN News and Asso-
ciated Press. This 13-core was present within the first hour of collected Twitter
feed and was constant throughout. This core contains the major news channels
at each timestep, thus a very good measure to identify the key players driving
the network during its inception.

Fig. 5. End-state Network Community and Betweenness Centrality Overview

The communities were analyzed during the network’s growth. The end-state
network was partitioned into 6, 829 communities, though 73% of the nodes were
represented by only the six largest. Therefore, the six largest communities were
tracked throughout the two-hours time slice networks, and compared to the



end-state network. Of the 6, 829 Communities in the end-state network , the
top six communities constitute of 28, 966 nodes (33.36%) 24, 097 nodes (27.75%)
5, 006 nodes (5.77%) 2, 350 nodes (2.71%) 1, 463 nodes (1.69%), and 1, 092 nodes
(1.26%). The community labelled 121 is the largest in the network, and it con-
tains most of the nodes of the core as shown in Figure 4.

Both centrality and the largest six communities were very unstable in nature
during the growth of the network, but not the core (at k = 13 the whole time).

A representation of the network’s largest six communities, and their com-
parison and the top ten most central nodes of the time slices were compared
in Figure 5. The end-state network’s closeness and betweenness centralities is
shown in Figure 6.

(a) Closeness (b) Betweenness

Fig. 6. Nodes with High Centrality values in the End-state Network

Notice some overlap between the core at any stage in the 24 hours, and the
nodes with high closeness and betweenness centrality. Namely AFP News (afp),
CNN News (cnn), and French Pres Hollande (fhollande) are in the core and
have high closenss centrality at the 24 hour mark. Similarly, AFP News (afp)
Reuters News (reuters) and username ciwanciziri are in the core and have high
betweenness centrality at the 24 hour mark. Therefore, the core in the early
development of the network contains some of the representative main actors of
this social network.

5 Conclusions and Further Studies

Analysis of the Twitter hashtag #ParisAttacks activity over 24-hours explored
a network’s topological metrics that were both descriptive and prescriptive of
the end-state network. Knowledge of the end-state network and the associated
metrics enabled a comparison of the dynamic network characteristics as it grew.
The top central nodes have not been consistent, where only a couple of the



top ten nodes in the end-state network have appeared in the top ten at earlier
stages. Both the betweeness and communities experienced an unexplained spike
at the end of the observed period. This spike would require additional research
to discern if the rapid increase is a step function inherent to the network or an
anomaly. This was not present in the 13-core.

The 13 k-core was representative of the end-state network within the first
hour of Twitter activity, remaining consistent throughout the 24-hour period.
This solidifies our belief in the stability and representative nature of the k-core
metric that could be used for emergency Twitter activity.
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