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Abstract. In this paper, we present a multi-agent simulation of the El
Farol bar problem (EFBP), where the agents are cognitive models relying
on the mechanisms of Instance-based learning theory (IBLT) and ACT-
R. EFBP is a well-known example that illustrates how complex systems
and economies evolve from induction. We investigate the effects of the
different memory abilities of the agents, as well as the effects of the
population’s heterogeneity on their cognitive abilities. Our results of the
emergent dynamics of the bar attendance suggest that the multi-agent
simulation based on the IBL model is able to capture the dynamical
properties of the EFBP reported in earlier work (Arthur, 1994). But
most importantly, we show that the dynamics of bar attendance are
sensitively dependent on the agents’ cognitive abilities as described by
the decay parameter in the IBL model. Furthermore, our results show
that heterogeneity in their cognitive abilities may lead to the control of
emergent dynamics.
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1 Introduction

Traditional economic theories of decision making are based on the "rationality"
assumption: that agents are able to form accurate expectations and make opti-
mal decisions. In real life situations, however, we often make decisions that are
bounded by our cognitive abilities [15]. Behavioral economists and psychologists
know that humans are rationally bounded and can only behave according to the
contingencies of their capacities and the demands of the environment [28]. This
observation from individual decision makers also expands to large and complex
economies where multiple agents act together [4]. But these two perspectives,
the psychology of the individual and the economy of a society, have rarely been
brought together [5].

Network science and complexity economics studies focus on the interactions
between actors and decision makers and their emergent social and economic
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phenomena, but they over-simplify the cognitive aspects of the individuals in-
volved. For example, to explain the complex dynamics seen in large economic
systems like financial markets, researchers have often relied on agent-based mod-
els, but rarely on cognitive models. On the other hand, cognitive modelers of-
ten focus on explaining individual behavior, relying on detailed cognitive mod-
els/architectures that formalize invariant cognitive representations and mech-
anisms [1, 22], but they rarely model the behavior of a group of individuals
(see [17, 27] for some exceptions). This paper seeks to bridge this gap by in-
vestigating the impact of the heterogeneity of memory decay on learning and
reduction of stochasticity in a large economy through cognitive models.

We use a well-known example of how complex, multi-player systems may
evolve from inductive reasoning [3]: The El Farol bar problem (EFBP). This
example presents a binary choice situation. There is a bar with a fixed capacity
and a large number of people that independently choose from week to week
whether to patron the bar or stay at home. Those who go to the bar when it
is overcrowded will not have fun and those that stay home when the bar is not
overcrowded will also not have fun. Thus the goal is to maximize the enjoyable
experience by going to the bar without overcrowding it.

Binary-choice is the core of every choice problem. This has been studied from
the cognitive perspective using a theory of decisions from experience, Instance-
based Learning Theory (IBLT) [18]. IBLT posits that a choice is made by max-
imizing the experienced expected values of the two options (e.g., going or not
going to the bar) from experience. IBLT is in general agreement with Skin-
ner’s basic propositions (1985) and reinforcement learning models [12, 29]. The
instance-based learning (IBL) model for binary choice proposed by Gonzalez
and colleagues [16,24] is a computational representation of some of the proposed
mechanisms of IBLT. This model builds on the learning and memory mecha-
nisms of the ACT-R architecture [2] and it has been demonstrated as a robust
representation of human behavior in many variations of binary choice tasks [15]

In the EFBP, the agents’ ability to successfully predict bar attendance is
dependent on their ability to generate predictions based on their past experience
(historical attendance). For a homogeneous population of agents, that ability can
be the same across all agents; i.e., every agent has the same memory capacity to
predict bar attendance.For a heterogeneous population on the other hand, this
capacity would differ across agent population. Sensitivity towards recent events
is controlled through a memory decay mechanism in the IBL model. Changing
the values of the decay mechanism can greatly influence the model’s sensitivity
towards recent events.

In what follows, we first present the background concepts involving the EFBP
and the generic IBL model of repeated binary choice. Then we explain how we
created a multi-agent simulation where we manipulated the memory decay in the
IBL model to investigate its effects in a homogeneous and in a heterogeneous
population. Our approach presents exciting possibilities for bridging the gap
between the macro-view of large economies and the richness of cognitive models
for individual agents.
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2 El Farol Bar Problem

Every week, a set of N (N=100) people decide whether or not to go to a bar
that offers live entertainment on Thursday nights. The bar has limited sitting
capacity and may get too crowded if too many people (> 60) go at the same
time. The evening is enjoyable if the bar is not over-crowded (< 60). Hence,
the payoff of going to the bar is higher than staying at home. If the bar is too
crowded though, the evening is less enjoyable and the payoff of staying at home
is higher than going to the bar. There is no definite way to tell how many people
will patron the bar in advance. Hence, a person will go to the bar if he expects
to have a better time going to the bar than staying at home and will stay at
home if he expects it to be better off than going to the bar.

One of the most important results of the EFBP is that agents are able to
synchronize their actions such that the average attendance at the bar converges
to the bar capacity, C, even though there is no communication between them [3].
This result has been reproduced in several other studies [6,7,13]. Although this
is an interesting result, the stochasticity and oscillatory behavior demonstrated
in past studies is costly and inefficient.

A less trivial question regarding the collective behavior of the agents is
whether or not they can reduce stochastic fluctuations (whether or not they
can learn). Researchers have investigated this question to determine what agent
characteristics may lead to changes in the emergent dynamics [5,9]. An example
is the minority game [9], which involves heterogeneous inductive agents. Each
of N players chooses between two options in every turn and those who are on
the minority side win. The minority game has been extensively studied, with
numerous variants analyzed [8, 10, 19–21, 23]. All results of the minority game
can be directly applied to the EFBP [7].

Toy models such as the EFBP and the minority game have been used to
explain market volatility based on the trading behavior of the agents [26]. Marsili
and Challet showed that if the agents’ learning rate is above a critical value,
market dynamics become turbulent [26]. The reactivity of agents can be defined
as their ability to react to the outcome of a game. Agents with high learning rates
are more reactive than the ones with lower learning rates, leading to enhanced
volatility in toy models. Similarly, with the use of reinforcement learning models
in the EFBP [11, 30]; it was shown that agents can be divided into those who
always attend the bar and those who always stay at home.

Here, we address two questions regarding the collective behavior of cognitive
agents: How do homogeneous populations with different memory capacities re-
duce stochastic fluctuations in the EFBP? And how does the heterogeneity of
memory capacities influence such learning? We address these questions by using
the IBL model for repeated binary choice [15] in the context of the EFBP.
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3 A generic IBL model of binary choice in the context of
EFBP

The IBL model for repeated binary choice has accounted for human behavior in
a large variety of tasks [15, 16, 25] . These model predictions are robust across
different flavors of binary choice tasks, including probabilistic learning, dynamic
probabilities, learning in multiple binary choice paradigms, and market entry
games.

We used this generic model in the context of the EFBP. Each agent was
defined with an IBL model consisting of four possible instances: [Go, +1], [Go, -
1], [No-Go, +1], [No-Go, -1], representing the decision (Go, No-Go) of each agent
and the possible outcome after each decision. For Go, -1 indicates the bar was
overcrowded and +1 the bar was undercrowded; and for No-Go, -1 indicates the
bar was undercrowded and +1 the bar was overcrowded.

The mechanisms of the IBL model for binary choice applied in the same way
as they have been used in many other binary choice tasks [16,17,24]. These are
summarized below for completeness.

At any time t, the model selects the option with the highest blended value
(utility), which is computed as a weighted average of experienced outcomes in
instances belonging to a given option. The blended value V of option j at time
t is defined as:

Vj =

n∑
i=1

pijxij (1)

Where xij is the outcome stored in an instance i for option j, and pij is the
probability of retrieving the instance i from the memory. The n is the number
of instances containing experienced outcomes on option j up to the last trial.

The probability of retrieving an instance i from memory is a function of its
activation (Ai) relative to the activation of all other instances that correspond
to option j. In each trial t, the retrieval probability is defined as:

Pi =
e
Ai
τ∑
i
Ai
τ

(2)

The activation of each instance in memory depends upon the Activation
mechanism originally proposed in the ACT-R architecture [2]. In the IBL model,
a simplified version that relies on recency and frequency of use of instances is
used. In each trial t, activation of instance i is given as:

Ai = ln

( ∑
ti∈{1,..,t−1}

(t− ti)−d
)

+ σln

(
1− Yi
Yi

)
(3)

Where τ is random noise defined as
√
2σ, and σ is a free noise parameter

accounting for the imprecision of recalling instances from memory for blending
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(adapted from ACT-R; [2]). Thus, a high sigma value implies more variability
in retrieving instances from memory.

The decay d is a free parameter, and ti (i.e., a timestamp) refers to the
previous trial in which the outcome i was observed. Hence, the activation of
an instance containing an outcome is dependent on the frequency of observing
that outcome. The d parameter accounts for the rate of forgetting information:
a higher value leads to a faster decay of an instance’s activation in memory
and signifies reliance on recently observed outcomes. The Yi term is a random
draw from a uniform distribution U(0, 1), and the σ.ln((1-Yi)/Yi) in term repre-
sents the Gaussian noise for capturing the participant-to-participant variability
in activation.

4 The multi-agent simulation of EFBP

An agent-based model was developed with a total of N (N=100) agents, where
each agent was implemented with an IBL model as described above. The model
was implemented in the multi-agent simulation environment, Netlogo [31]. De-
tails about the Netlogo simulation environment for EFBP can be found else-
where [14]. Each agent had one free parameter (d), which controlled its sensi-
tivity towards recent outcome. In order to generate less noisy results, the noise
parameter in the IBL model was fixed to a very low value of 0.001.

For each time step, every agent decides whether or not to go to the bar,
according to the IBL’s blending mechanism and what every agent has learned
from its past experience.

We generated two types of simulations involving a (1) homogeneous popula-
tion, and (2) a heterogeneous population. For each simulation in the homogenous
case, all N agents had a fixed d parameter, producing a population of identical
agents in terms of decay capabilities. In order to study the effect of d parameter
on the emergent dynamics of the bar’s attendance, we ran different simulations
with different values of d (0.1, 1.0, 2.5). For low values of d when all agents
relied on a longer-lasting memory, agents were expected to be able to account
for more past experiences and make more informed decisions. We expected rapid
learning and reduced oscillations around the optimal capacity level. With high
values of d, agents would rely only on more recent experiences, producing more
oscillations, less coordination, and less learning about the bar’s capacity level.

Our investigation of the heterogeneous populations (involving a mix of agents
with high and low memory values) was more exploratory. We generated different
mixtures of agents with different values of d. Each simulation was run for a
period of 200 cycles.
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5 Dynamics of bar attendance with a homogeneous
population

Our results show that bar attendance fluctuates around the capacity (C=60).
But the amplitude and frequency of the fluctuation decreases with time, regard-
less of the value of d, and replicates learning patterns seen before in the EFBP.

More interestingly, a novel contribution is this simulation’s sensitivity to the
value of d. The stochasticity of bar attendance increased with an increase in the
value of the d parameter. Figure 1 shows the average attendance level for each
of the 200 weeks. Each panel shows the results of one value of d, from 0.1 (first
panel) to 2.5 (last panel).

Fig. 1. Typical patterns of the dynamics of bar attendance with homogeneous popu-
lation for different values of d.

To analyze the degree of stochasticity for different values of d, we computed
the mean deviation of the bar attendance from the bar capacity (C = 60).
The mean deviation of the bar attendance from the capacity for N trials was
computed as follows:

1

N

∑
|Attendance− C| (4)

We ran each simulation 20 times and compared the mean estimates of devia-
tion from bar capacity across different values of d. Table 1 shows an increase in
mean deviation as d increased from 0.1 to 5.0. Our results suggest that d influ-
ence the dynamics of bar attendance and collective learning as shown in Figure
1.

Table 1. Mean and standard deviation of the mean deviation estimates across 20
simulation runs for different values of d

d Mean deviation from C

0.10 M=4.56, SD=0.23
1.00 M=10.50, SD=0.29
2.50 M=12.97,SD=0.31
5.00 M=11.14, SD=0.40
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6 Dynamics of bar attendance with heterogeneous
population

Expectations of a homogeneous population in any social scenario are unrealistic
since individuals vary greatly in their cognitive abilities. In order to start explor-
ing the effect of heterogeneous population on the dynamics of bar attendance,
different levels of diversity in the population were generated by creating two
groups in the population varying on the value of d for each subgroup.

To produce a heterogeneous mix of population, we chose two of d values (0.1
and 5.0) and generated a population mix with different fractions of agents having
a d = 0.1 and a d = 5.0. We can name the two kinds of agents in the population
as A and B, with A being the agents with d = 0.1 and B being the agents
with d = 5.0. We varied the number of A and B agents to produce a balanced
(A = 50, B = 50) or imbalanced (A = 25/75, B = 75/25) mix of agents.

Our results shown in Figure 2 indicate that as the fraction of A agents (d =
0.1) decreased, the dynamics of bar attendance became more stochastic. This
result is interesting in the sense that it shows that as the memory capacity of the
majority of agents decreased, the emergent dynamics became more stochastic.
This suggests that the right amount of variation in the cognitive abilities of
agents can lead to better control (reduction in randomness) in the EFBP. We
further analyzed this effect by computing mean deviation from the bar capacity
across trials. Similar to the homogeneous case, our results show that learning is
more prominent when the majority of agents have high memory capacity (high
d).

As can be seen in Table 2, mean deviation is highest for the case with A = 10
and B = 90, and lowest for A = 90 and B = 10. This result further solidifies
the claim that the d parameter significantly affects the emergent dynamics and
learning in this problem. This result has far reaching implications in the field of
complexity economics.

Fig. 2. Typical patterns of the dynamics of bar attendance with different mixes of
agents with d = 0.1 and d = 5.0.
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Table 2. Mean and standard deviation of mean deviation estimates across 20 simula-
tion runs for different values of A and B

A, B Mean deviation from C

90, 10 M=4.86, SD=0.26
75, 25 M=5.78, SD=0.26
50, 50 M=7.37,SD=0.28
25, 75 M=9.09, SD=0.39
10, 90 M=10.34, SD=0.31

7 Discussion

The major goal of the current paper was to simulate a well-known problem
(EFBP) in complexity economics using cognitive agents employing the mecha-
nisms of a well-known cognitive model (IBL), so as to bridge the gap between
complexity economics and cognitive psychology.

We presented a simulation of how cognitive agents with heterogeneous or
homogeneous memory abilities learn in EFBP. Cognitive agents were modeled
with the IBL model of binary choice [15, 16, 24]. We demonstrate the dynam-
ics’ sensitivity to the agents’ cognitive parameters (d). This result is important
because it shows how the dynamics of the collective behavior of all agents is
dependent on the cognitive abilities of individual agents. When all the agents
are sensitive to only recent outcomes (high d parameter), this results in high
stochasticity; but less stochasticity results when all agents can account for a
larger set of experiences (low d parameter). Furthermore the heterogeneity of
the population with more people with longer-lasting memory is also beneficial
to reducing stochasticity.

These results have far reaching implications in the financial markets, where
a diverse range of individuals participate, each with different levels of cognitive
abilities. In the context of markets, our results imply that when the market is
composed of impatient individuals (high d), a high stochasticity in the market
dynamics will be seen because the individuals would predict the market based on
their most recent experience, instead of accounting for all the previous outcomes.
Such dynamics are often seen in financial markets and our results indicate that
this may be due to individuals that predict the market based on the most re-
cent information. On the other extreme, if the market is composed of experts or
statistical agents (low d), the market would be less stochastic because the indi-
viduals would predict the market based on its complete past history. In the case
of heterogeneous population, if the majority of individuals are reactive (high d),
the dynamics lean towards stochasticity. On the other hand, if the majority of
individuals are experts (low d), more stable dynamics are found. These results
show how diversity in the agent population can affect market dynamics. We also
observed that the right mix of heterogeneous agents can reduce the randomness
in the emergent dynamics of the bar attendance as compared to the homogeneous
population with the same d parameters, suggesting that diversity in cognitive
abilities can lead to improved control.
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In this paper, we only used two groups of agents for the heterogeneous ac-
cording to the value of d. This case, however, can be extended to include different
distributions of the d parameter across the agent population. We leave this in-
vestigation for future work.

We expect to extend this work to address various other issues that arise in
social systems that can be answered by employing cognitive models/architectures
in the complex systems framework, by using agent-based modeling.
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