
Spot the Hotspot: Wi-Fi Hotspot Classification from Internet Traffic

Andrey Finkelshtein Rami Puzis Asaf Shabtai Bronislav Sidik

Ben Gurion University of the Negev

SMARTPHONES

- Smartphones are everywhere
 - Smartphones are very common
 - The smartphone is always with us
- Not only we need the smartphone –
 We need to be online all the time

SMARTPHONE USAGE

Usage of mobile phones by mobile phone users in the UK (2013) [2]

- Phone calls and Texting (98%)
- Take photos (67%)
- Browse websites (54%)

E-mails (51%)

- Social Networks (51%)
- Download apps and games (39%)
- Listen to Music (41%)
- ..

[2] Adults' Media Use and Attitudes Report. Ofcom (2014)

SMARTPHONE USAGE

- People use their smartphones for different purposes in different venues
 - Will you stream music during a lecture?
 - Will you play mobile games while sitting in a bar with friends?
 - Will you video chat with a colleague while taking a bus?

The venue of a smartphone user can be defined as the context of a user

Requires Internet

VENUE AS A CONTEXT

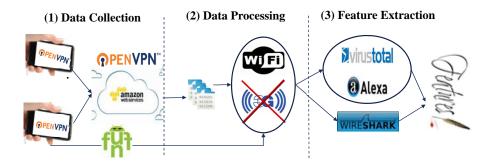
- Context based recommendation systems:
 - Recommend downloading a game to a user waiting in line
- Context based preferences:
 - Larger fonts for a bus passenger
 - Long articles for a user at home
- Context based access control:
 - Do not expose sensitive information to a user in a public place
- Context based commercials:
 - A beverage to a user dinning in a restaurant

5

HOW TO FIND THE VENUE?

- Ask the user
- Derive it
 - User's location
 - Not always accurate or available
 - Requires knowledge about the physical location
 - Different venues can be located next each or even in the same building
 - Smartphone sensors (Wi-Fi scanner, light sensor, accelerometer...)
 - Requires presence on the smartphone (Application)
 - Permissions, battery and performance issues
 - Internet Traffic
 - Does not require presence on the smartphone
 - Does not bother the user

PROBLEM DEFINITION


• Given Internet traffic records of a smartphone user, find the type* of the venue the user is located in.

*We'll define venues types shortly

DATA COLLECTION

- Experiments with smartphone users:
 - Conducted during 2014 and 2015
 - A total of 115 student subjects
 - Information collected:
 - Internet traffic records from subjects' devices
 - Wi-Fi hotspots connection and disconnections information
 - Record periods of 30 to 60 consecutive days per user

DATA COLLECTION PROCESS

- (I) Client application redirects Internet traffic to a server and records Wi-Fi connection/disconnection events
- (2) Cellular traffic is filtered out
- (3) Features are extracted for each session

FROM WI-FI HOTSPOTS TO VENUES TYPES

Manual labeling by SSID

- Wi-Fi hotspots are now everywhere
 - In our homes
 - In our neighbors houses
 - Restaurants
 - Shopping malls
 - Workplaces
 - Education institutes
 - Public transport
 - Hair salons

Home

Hangout places

Organizations

Waiting places

INTERIM SUMMARY

- So far:
 - We saw venues are part of the context of smartphone users
 - We collected smartphones traffic records within hotspots
 - We labeled the hotspots by the type of the venues they are located in
 - Home, Organization, Hangout and Waiting
- What is next:
 - Extract features from traffic
 - Analyze the data
 - Build classification model

...

FEATURE EXTRACTION

- Communication Features
 - Statistics on traffic volumes, arrival times, lost packets, etc...
- Domains Info
 - Categories
 - Security scores
 - Popularity
- Protocols based Features
 - HTTP cookies
 - SSL certificates

DATA ANALYSIS

We distinguish between two different types of attributes:

- User behavior attributes:
 - Domains categories and popularity
 - Traffic volumes
- Hotspot properties attributes:
 - Packets arrival time
 - Packet loss
 - ...

13

USER BEHAVIOR ANALYSIS Proportional amount of traffic volumes of different behavioral attributes for each venue type: Popularity scores 0.8 No big difference in and security scores 0.7 popular categories seems to correlate Significant difference We hypothesize that in the unpopular a large amount of the categories traffic is generated by AA3180 PORTS IAU the device and not the user ■ hangout ■ home ■ organization ■ waiting

HOTSPOT VENUES CLASSIFICATION

- Sessions are too small units to be classified
 - → need to aggregate the data into larger chunks
- We aggregated the data into connection windows (CWs):
 - CW is defined as all of the session of a user within a single hotspot with an idle time smaller than 30 minutes

15

CONNECTION WINDOWS

- The aggregation resulted 37,714 CWs
- the majority of them are "Home" CWs (72.56%)
- Only 720 "Waiting" CWs (1.91%)
- To overcome the imbalance problem we created
 3 dataset by sampling randomly CWs:
 - 3600 CWs in each dataset:
 - 960 Home CWs
 - 960 Organization CWs
 - 960 Hangout CWs
 - 720 Waiting CWs

Hotspot Type	Number of Connection Windows						
Home (H)	27,367						
Organization (O)	7,929						
Hangout (HO)	2,708						
Waiting (W)	720						
Total	37,714						

MULTICLASS MODEL

- A multiclass classification approach:
 - Feature selection Correlation Feature Selection (CFS)
 - Classification Model Rotation Forest Ensemble algorithm
 - Evaluation 10-fold cross validation
 - Results:

	Dataset1	Dataset2	Dataset3		
Accuracy	57.75%	57.67%	58.5%		
Weighted AUC	0.81	0.82	0.83		
Home AUC	0.75	0.73	0.76		
Hangout AUC	0.90	0.90	0.90		
Org. AUC	0.80	0.81	0.83		
Waiting AUC	0.80	0.81	0.82		

ľ

ONE VERSUS ALL MODEL

- Train 4 classifiers:
 - one for each hotspots type (venue)
 - The rest of the types are labeled as "other"
- The classification is made using the probabilities of the classifiers
 - Each classifier provides the probability of a CW to be from a specific type
 - The type is decided by the highest probability
- This model showed some improvement compared to the multiclass model
- Performed better in classifying "Home" and "Org." hotspots

COMBINED MODEL

- Use both models to classify CWs:
- Classify using the "I vs. all" model
 - If the classification is "Home" or "Organization" use the classification
 - else, use the multiclass model to classify the CW
- Evaluation:
 - Evaluate on the same 3 datasets
 - Random train-test splits:
 - Test groups of 100, 200, 400 and 800 instances

...

COMBINED MODEL EVALUATION RESULTS

	Dataset1			Dataset2				Dataset3				
	H.	0.	НО	W.	H.	0.	НО	W.	H.	0.	НО	W.
Avg. Precision	.73	.55	.55	.63	.70	.50	.46	.67	.66	.62	.51	.70
Avg. Recall	.81	.66	.48	.50	.84	.61	.34	.57	.81	.71	.46	.51
Avg. F-measure	.77	.60	.51	.56	.76	.55	.39	.62	.73	.66	.48	.59
Accuracy		7	6.5%			7	5.1%			78	.1%	

CONCLUSIONS AND FUTURE WORK

- Conclusions
 - Smartphone users' behavior changes across different types of venues
 - Internet traffic can be used to classify the type of the venue
 - The differences in the behavior are reflected in the less popular domain categories
- Future work
 - Improve the dataset
 - More subjects, Higher diversity
 - Classify venues using other data sources:
 - Use smartphone sensors available to mobile applications

21

QUESTIONS?

Thank you!