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Abstract. Although sources of social media data abound, companies
are often reluctant to share data, even anonymized or aggregated, for
fear of violating user privacy. This paper introduces an approach for
learning the probability of link formation from data using generative ad-
versarial neural networks. In our generative adversarial network (GAN)
paradigm, one neural network is trained to generate the graph topology,
and a second network attempts to discriminate between the synthesized
graph and the original data. After the generative network is fully trained,
the learned weights can be disseminated and used to “clone” the hid-
den dataset with minimal risk of privacy breaches. We believe that the
learned neural network also has the potential to serve as a more general
model of social network evolution.
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1 Introduction

A key issue in agent-based modeling is how to create a synthetic population
with realistic behaviors from a limited amount of survey and census data. To
achieve maximum verisimilitude with minimal data collection e↵ort, the modeler
must focus on the subset of agent attributes most likely to a↵ect the outcome
of the simulation scenario. However, since humans are by nature social animals,
accurately modeling social connections has cross-cutting impact for any type of
simulation in which the humans are a↵ected by their peers due to social influ-
ence, norms, collective behavior, and group dynamics. Hence for many scientific
questions, accurately reconstructing the topology of the peer network can dra-
matically a↵ect the simulation fidelity.

Synthetic network generators can be used to create network topologies for
agent-based social simulations in cases where limited network data is available.
Most generators assume that the social network fits one of the standard math-
ematical models of network formation and rewiring, When data is available,
fitting techniques can be used to select the model parameters that best match
the data. However, human networks often emerge from the confluence of many
social processes and are not well modeled by a single model, limiting the appli-
cability of parametric models of network generation. Moreover, these techniques
are di�cult to extend to networks with node features or multiple layers.
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Rather than assuming a specific parametric model, we introduce a semi-
supervised model of network generation in which the network topology is learned
by generative adversarial neural networks. Generative adversarial networks (GANs)
[1] can approximate hidden probability distributions using a competitive learning
process in which one neural network generates a sample and a second neural net-
work attempts to discriminate between synthetic samples and examples drawn
from the real distribution. In the domains of computer generated artwork and
computer vision, GANs have a proven track record of being able to syntheti-
cally generate images capable of fooling human observers. We train our GANs
by treating the network adjacency matrix as an image; large datasets can be
created by sampling the permutation distribution of a single example network.
This paper describes our training procedure and compares the GAN output to a
synthetic network generator that attempts to directly match network attributes
using stochastic optimization (Attribute Synthetic Generator [2]). We demon-
strate that our GAN can successfully learn the topology of networks with very
di↵erent degree distributions, making it more versatile than standard mathe-
matical models.

2 Method

We experimented with multiple neural network architectures before adopting the
following procedure. To synthesize the graph topology for the four social net-
works, the discriminator was provided with flattened adjacency matrices from
the original networks, along with 10,000 permutations of the adjacency matrix
with randomly swapped node indexes. These matrices can be treated and vi-
sualized as greyscale images. Increasing the diversity of input samples makes it
more di�cult for the GAN to memorize the training set and has been shown to
improve the quality of the synthesized data [3].

Our discriminator network includes one linear hidden layer, followed by a
rectified linear unit (ReLU) activation layer, and an output layer with a sigmoid
activation function (Figure 1, top). The generator input consists of 100 random
samples drawn from a normal distribution (N(0, 1)). Our generator network
consists of two linear hidden layers each with 1000 neurons, batch normalization
and ReLU activation functions, and an output layer with n2 sigmoid units where
n is the number of nodes in the original network (Figure 1, bottom). If the
original dataset was a sparse network, only one hidden layer with 500 nodes
was used during training. In our experiments, the sparsity of the network was
determined by dividing the number of edges by the number of nodes and treating
it as sparse if the ratio is less than or equal to ten.

2.1 Training Procedure

Despite the simplicity of the GAN model, the training procedure can be tricky
because the discriminator and generator must improve in a harmonious fashion
such that the discriminator challenges the generator without decisively beating it
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Fig. 1: Network architectures (top: discriminator (D) and bottom: generator (G))

at the min-max game. The training process starts by training the discriminator,
as the generator needs the error output from the trained discriminator to progress
to the next level. The key point is that D should not be trained completely, which
leads to overfitting, and does not improve G in the next level.

Each network is trained using stochastic gradient descent (SGD), and this
alternating training process was repeated 1000 times. 10,000 data samples (the
original adjacency matrix plus permutations) were presented to the discriminator
along with the same number of synthetic samples from the generator in batches
of 100. Learning rates for the discriminator and the generator were set to 0.0001
and 0.01 respectively.

The final output of the generator is a matrix with values ranging from zero
to one, visualized as a greyscale image. To use this output as a graph adjacency
matrix, it needs to be thresholded using a fitting procedure to clone the original
dataset. For each dataset, we selected the best of 25 threshold levels using two
features to determine the best candidate: 1) edges and 2) degree assortativity.

Our implementation uses the Torch scientific framework [4], and the experi-
ments were performed on a PC with an Intel Xeon(R) CPU W3565 @ 3.20GHz
4 and 23.5 GB memory.

3 Results

To evaluate the performance of our approach, we learned the graph topology for
four real-world networks. Table 1 provides the network statistics for each of the
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real datasets, along with the version of each network cloned using the GAN. As
a benchmark, we also provide network cloning results from the Attribute Syn-
thetic Generator [2] which uses stochastic optimization. Although it is di�cult
to evaluate the generality of the learned link formation model, we can exam-
ine the performance of its fitting procedure for cloning networks. Compared to
ASG, the GAN performs slightly better at recreating many aspects of the net-
work topology across the four datasets. Note that the time required to generate
a network using a GAN is significantly higher than ASG, particularly for the
dense Enron network.

Figure 2 shows degree distributions of the real networks (left) as well as the
synthetic version generated by the GAN (right). Although many networks pos-
sess power law degree distributions, this is not always true for networks generated
from di↵erent social processes; our four datasets display considerable diversity
in the degree distributions. The best model for each network (synthetic and real)
was selected based on the value of R2 which indicates the goodness of a fit (see
figure inset for model and R2 value). As shown in the figures, the GAN success-
fully recreates the degree distributions of the original networks; however unlike
most synthetic network generators, the GANs do not assume that the degree
distribution will follow a specific form.

4 Conclusion and Future Work

This paper introduces a novel semi-supervised approach for learning graph topolo-
gies of social networks using generative adversarial neural networks. There are
several promising directions for future work. For instance, alternative network
representations such as stochastic block models would be useful for scaling the
learning to larger networks. Introducing convolutional layers into the network
might facilitate the learning of local structures such as communities. Recurrent
neural networks have been used to generate many types of sequential data and
could be extended to the problem of learning network dynamics. In the future,
we plan to create new architectures for synthetically generating more complex
graph topologies including dynamic and multilayer networks.
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Table 1: Statistics of real networks vs. generated networks

Feature Method Enron Karate Football Dolphins

No. of Nodes Real 154 34 115 62

GAN 154 34 115 62

ASG 154 34 115 62

No. of Edges Real 1917 78 613 159

GAN 2288 77 472 153

ASG 497 103 360 194

Average degree Real 24 4 10 5

GAN 29 4 8 5

ASG 6 6 6 6

Max degree Real 138 19 21 19

GAN 68 17 19 15

ASG 50 18 42 28

Min degree Real 5 1 1 1

GAN 8 1 1 1

ASG 1 1 1 2

Assortativity Real -0.068 -0.547 -0.144 -0.174

GAN -0.093 -0.250 -0.146 -0.127

ASG -0.140 -0.035 -0.080 -0.127

Network Diameter Real 3 4 5 5

GAN 3 5 5 5

ASG 8 5 8 6

Avg. Path Length Real 1.923 2.157 2.335 2.620

GAN 1.837 2.456 2.460 2.558

ASG 3.586 2.770 3.619 3.190

Runtime (hrs) Real - - - -

GAN 62.26 2.92 33.47 9.27

ASG < 1 < 1 < 1 < 1
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Fig. 2: Degree distributions of di↵erent real networks vs. networks generated by
GAN. Note that the networks do not always follow a power law distribution.
The best fitting distributions were selected using the R2 fitness value which is
displayed at the bottom of the figures, along with the model. The GAN does
well at matching the distributions of the original networks without any a priori

knowledge.


