

THOMSON REUTERS

MAPPING THE ECHO-CHAMBER: DETECTING AND CHARACTERIZING PARTISAN NETWORKS ON TWITTER.

{Armineh Nourbakhsh, Xiaomo Liu, Quanzhi Li, Sameena Shah}@thomsonreuters.com **Research and Development, Thomson Reuters**

RESEARCH & DEVELOPMENT

BACKGROUND & PROBLEM STMT

- Echo chambers: communities that share content with similar viewpoint; rarely interact with other communities in positive terms
- Studies that have focused on echo chambers:
 - Use real network of follower/friends, but:
 - Complete network info is hard to obtain.
 - Follower/followee relations don't necessarily reflect political agreement.
 - Use labeled data, but:
 - Labels may be biased themselves.
 - Labels may change over time, e.g. many former UKIP supporters voted for Labour in UK's generation election of '17.
 - After echo-chambers are identified, all of their content is dismissed as biased.

- Problem:

- Identify echo-chambers on Twitter, such that:

DATA & METHODOLOGY

- Seed set: domains mentioned in Kaggle's fake news dataset (2016-10-25 to 2016-11-25).
- Download all tweets that mentioned those domains within the same time period: **25,742,785** tweets from **131,552** unique accounts
- Use **PMI**-like measure to score domains by
 - similarity to each other
 - similarity to Kaggle domains
- Score users based on the domains they share:
 - **Bias**: similarity of a given user's domains to Kaggle domains.
 - Partisanship: similarity of a given user's domains to each other.
- Draw network of co-shared domains:
 - Node size: partisanship of each user.

- Network info is not required.
- No *human labeling* is required.
- Model can identify *which topics are subject to misrepresentation* by each echo-chamber.
- Do all of this in a way that the model can be updated in *real-time*.
- Edge width: number and cumulative bias of two nodes' shared domains.
- Run Louvain modularity detection to identify echo-chambers (color-coded).
- Calculate each chamber's deviation:
 - Word2Vec deviation from a large global set.
 - **TF-IDF deviation** from other chambers.
- High Word2Vec deviation AND low TF-IDF deviation ⇒ potentially misrepresented topic.

FBI, bad, witch | covering, Mueller, investigated | Obama, Comey, million | shooter, apology, MSM

death, travel, Muslims | wikileaks, alleged, brothers | vaccines, reckless, study

Tory, legal, politician | Corbyn, #LastMinuteCorbynSmears, @jeremycorbyn | #bbcsp, industry, MSM

EVALUATION

- Buzzfeed's list of 60 true stories and 60 fake stories propagated on Facebook in the period leading up to 2016 U.S. presidential election.
- Download tweets linking to the same articles (**no seed set > no bias score**).
- Apply echo-chamber analysis to the users.
- Train linear classifier based on: user partisanship, domain exclusivity, content match against each chamber's set of deviating terms

- F1 scores show the features are robust & informative, even for simple classifiers

Features	LogReg	DTree	SVMLinear
user + domain	0.73	0.71	0.74
user + content	0.69	0.67	0.69
domain + content	0.75	0.70	0.76
All	0.77	0.73	0.78

DISCUSSION

SIAN

- Suggested setup for real-time setting:
 - Network of chambers (re)constructed on a daily/weekly basis
 - An index constructed to score domains based on their popularity in each chamber
 - Tweets stream from the public API (e.g. using Spark streaming)
 - Stories are tracked by their URL
 - Users are benchmarked against the network
 - To avoid exhausting rate limits, a KB of users' common domains can be stored in a cache
 - Each story's score based on:
 - User scores
 - Content score
 - Domain score