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Motivation

Explosive growth of the Web allows people to freely
conduct activities in social media platforms.

This user-generated data is heterogeneous and rich in
confent.

This provides many opportunities for researchers to
better understand users behavior and provide
personalized services for them.

Publishing user data risks users’ privacy as it contains
sensitive and private information.
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Adversarial Technique for Heterogeneous Data

— Many anonymization techniques are introduced for
social media data.

Existing work assumes that it is sufficient to anonymize
each aspect of social media data independently.

Let us assume data consists of graph and textual

information: D = (V, &, X, W, W)

Case 1

Case 2

Case 3

Case 4

Given an anonymized social media dataset D, the aim
is to map each user u €D to a real identity in
targeted social media T.

1. Extracting top-k posts:

* Select posts with top scores
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2. Finding a set of candidates from targeted

social media
* Create the set of candidate usersC = {c1, c2, ..., ¢/}
by querying each qi(f) c 9, = {qq(f), q,l(f), s q,l(f)} in
the T’s search engine.
3. Matching-up candidates to target user
* Structural features

* Textual features
Szm (U, C,,;) = OéS?;mStruct (u7 Ci) + (1 — @)Simtext (’U,7 Ci)

* Exploiting Homophily Theory

* If two users match, their neighbors should also
match.

Evaluation

— We crawl data from Twitter and Foursquare

(a) Twitter (b) Foursquare

# of Users | #of Edges | Avg. Clustering Coefticient # of Users | #of Edges | Avg. Clustering Coefficient

6.789 244 480 0.219 22,332 229234 0.295

Density # of Tweets | # of Unigrams Density # of Tips # of Unigrams

0.005 478.129 208,483 0.0005 124,744 103,264

— Evaluation metric: Attack success rate = n,./N

(a) Twitter
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— Despite anonymization of all aspects of data is
essential, but it is not sufficient to anonymize each
aspect independently from others.

— This is because of hidden relations between different
aspects of heterogeneous social media data

Conclusion

* Homophily can also help to capture hidden — This work introduces new privacy risks in social media data.

Structural Anonymization | X X v / — This raises the need for an anonymization approach which

relations between different aspect of data.

Textual Anonymization X v X v considers the hidden relations between different

components of the data.
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Question : Is either of these cases sufficient for
anonymizing social media data?

Simtotal(ua C’i) — /BSZm (U, C,,;) T (1 o B)SZ?TL (N(u)7/\/‘(c7/))
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