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1 Introduction

Solving complex real-world modeling and optimization problems presents sev-
eral key challenges, including balancing the huge number of agents and system
states, considering the complicated interactions between agents, and accounting
for constant change in both the environment and the specification of optimality.
Existing algorithms generally cannot cope with these challenges. In this ab-
stract, we propose two approaches to this problem that utilize big data and the
reinforcement learning framework. These approaches can be applied to complex
social behaviour problems, such as allocating limited resources during natural
disaster events and optimizing dynamics in critical infrastructure.

2 Background

In this section we will introduce the notation we will use for the standard op-
timal control or reinforcement learning formulation. We consider innite-horizon
partially observable Markov decision process (POMDP), defined by the tuple
(S, A,0, P,r, po,7), where s € S denotes states, describing the possible configu-
rations of all agents; a € A denotes actions, which can be discrete or continuous;
P:SxAxS — R is the states transition probability distribution, where states
evolve according to the stochastic dynamics p(s;y1]s¢,at), which are in general
unknown; O is a set of observations for each agents; r : S — R is the reward
function; pg : S — [0,1] is the distribution of the initial state so; v € [0,1] is
a discount factor. For our research we make assumptions about the stochastic
action choices, in which actions may be chosen with any probabilities to facili-
tate more robust prediction and planning. To choose an action, each agent uses
a stochastic policy mg : O x A — [0, 1], which produces the next state according
to the states transition probability. Each agent obtains rewards as a function of
the state and agents action r : S X A — R, and receives a private observation
correlated with the state o : S — O.
Markov property:

P[S¢41S51,52, ..., St] = P[St+1] 5]

Solving a MDP means finding a policy 7* that maximizes the expected long-
term reward R = E?:o ~trt, where T is the time horizon.
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3 Social Behaviour Modeling during Natural Disasters

Natural disasters are important and devastating events for a country, which
makes it difficult to make informed decisions in terms of allocating limited re-
sources for mitigation efforts. According to the United Nations Office for Dis-
aster Risk Reduction natural disasters are happening more frequently, which
has caused a rise of 151% over the last twenty years in economic losses from
climate-related disasters. During 1998-2017, disaster-hit countries reported di-
rect economic losses from natural disasters of US$2,245 billion and these hazards
are responsible for 77% of the total losses in these countries. The USA has the
greatest economic losses among other countries of US$ 944.8 billion. Over the
last twenty years, disasters claimed more than 1.3 million lives, and more than
4 billion people were injured, rendered homeless or in need of assistance.

We introduce the novel approach of reinforcement learning framework to
model optimal resource allocation for natural disasters. Our hybrid model is a
combination of social behavioural modeling and deep reinforcement learning. We
propose a multi-agent real-time resource allocation framework to respond to the
disaster scenarios. The model can be used by experts, decision makers, disaster
managers and emergency personnel to assess the critical event and respond ap-
propriately in order to mitigate the disaster effects in real-time. This framework
can be applicable to various scenarios in response to the natural hazards, like
allocating firetrucks in case of wildfire, allocating snow plows during the winter
storms or allocating rescue crews during flooding. [1]
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Fig. 1: An overview of our framework. Left: a view of the module with a bundle of
independent agents. Right: a lead agent that makes an allocation decision based on the
data broadcasted by each of the subagents.

As shown on Fig. [I] our framework consists of two parts. On the lower level
(left side) there is a set of multi-agents (Ag, A1, ..., A,) that corresponds to the
number of sub-regions. Each agent predicts the volume of hazards and the im-
portance, taking as input an observation from the time-series environment. The
total number of agents is bounded by the number of sub-regions. On the higher
level (right side) there is a lead agent, which is trained to make resource alloca-
tion decisions for assigning volume distribution of involved resources.
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4 Social Behaviour Modeling in Critical Infrastructure

We formulate a stochastic kinetic process to model the diverse dynamics of agent
interactions and decision-making in a complex network as a sequence of atomic
events that individually induce minimal changes to the network but together
show diverse behavior. With this formulation, learning and control in a network
involve learning to set how fast these interaction events happen in response
to the noisy signals from within and outside the network. Such networked and
event-based control often appears in networked social, biological, and engineered
systems, which need to solve different optimization problems at different times.

To solve the learning and control problems of a stochastic kinetic model,
we reduce these problems to parameter-learning and inference problems in a
mixture of dynamic Bayesian networks. With this reduction we can bring in many
existing parameter-learning and statistical inference techniques for optimizing
the interactions of a networked system based on partial observations about the
complex environment, and integrate signal processing and decision-making into
a holistic framework. Specifically, we develop a particle filter algorithm to model
how the networked system continually tracks the current state of itself and the
environment using noisy observation streams, and to learn how to make near-
optimal plans by adjusting the rates at which interaction events happen (Fig. .
In this sense, our learning algorithm works through policy search that maximizes
the expected log-likelihood over agent policies in a mixture of dynamic Bayesian
networks. [2].
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Fig.2: Our policy search algorithm is done in two parts. During the Inference we
estimate the state density and reward associated with each particle. During the Search
step we update policy parameters according to the Inference results.

References

1. A. Vereshchaka, W. Dong, Dynamic resource allocation during natural disasters
using multi-agent environment, in: International Conference on Social Computing,
Behavioral-Cultural Modeling and Prediction and Behavior Representation in Mod-
eling and Simulation, Springer, 2019.

2. F. Yang, A. Vereshchaka, W. Dong, Predicting and optimizing city-scale road traf-
fic dynamics using trajectories of individual vehicles, in: 2018 IEEE International
Conference on Big Data (Big Data), IEEE, 2018, pp. 173-180.



	Social Behaviour Modeling and Optimization through Big Data and Reinforcement Learning

