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Abstract. The pervasiveness of virtual assistants in everyday life is becoming a 

natural expectation of users of technology at work. Existing commercial offerings 

are however solely reactive, thus slow, shortsighted, and narrow in their support. 

This is inadequate for dynamic, time-pressured, uncertain environments like the 

military or intensive care units. Digital assistants in such critical settings need to 

be proactive: They must sense the tasks and workflow of the users, understand 

their goals and intent, and provide support in anticipation of an explicit request. 

We present here early exploratory research on leveraging machine learning to 

accurately identify the current task and workflow and predict the likely next ones 

based on users’ interactions with the system. We conceived, trained, and tested 

six models in their identification and prediction abilities on a mock administrative 

use case. The best-performing classifiers predicted the majority of tasks cor-

rectly, with about 75% accuracy on average, and were able to achieve this accu-

racy after training on interaction data from three participants. We additionally 

present detailed performance results for our K-Nearest Neighbor model, to ex-

emplify key gaps and opportunities for continued research. 

Keywords: Cognitive work, task prediction, interactions-as-a-sensor, human-

computer interactions, digital assistant, decision-support systems, KNN. 

1 Motivation and Approach 

Beyond the commercial competitive market, the pervasiveness of virtual or digital as-

sistants in everyday life, from home devices (e.g., Google Home) and online search 

(e.g., Amazon’s Alexa), to wearable, mobile instant support (e.g., Apple’s Siri) and 

desktop assistance (e.g., Microsoft’s Cortana), is slowly becoming a natural expectation 

of users of technology at work [1]. However, such commercial offerings are typically 

reactive: A human prompt, such as a click, a voice command, or a recognizable action, 

will trigger processing by the digital assistant that will subsequently yield a response. 

This process intrinsically creates cognitive issues such as delays in getting a correct or 

exploitable answer, the shortsightedness of an automated reaction solely based on lim-

ited inputs, and the narrowness in performance optimization [2]. These shortcomings 

may be acceptable for routine home or shopping activities but constitute significant 
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limitations in the adoption of digital assistants in dynamic, time-pressured, uncertain 

environments (e.g., in the military or in hospitals’ intensive care units). 

Resolving these gaps through enhanced proactivity of the automated agents that 

drive the assistant’s behavior offers an encouraging research avenue. Conceptually, we 

define proactivity as the ability to minimize cognitive overhead (e.g., asking for specific 

support, refining requests, waiting for answers) through the anticipation of the user’s 

needs. Concretely, we propose to enable proactivity through the following trifecta: 

sensing the tasks and workflow of the users (Principle 1); understanding their goals and 

intent (Principle 2); and providing support in anticipation of an explicit request (Prin-

ciple 3). Earlier efforts have demonstrated the potential for this approach.  

Research for the Navy in the domain of multi-uninhabited systems supervisory con-

trol has explored how to derive intent from observation by an automated agent of a 

human planner organizing an air tasking order [3,4]. Flight deck decision-supports were 

investigated for NASA as a means to provided scalable support depending on the con-

text of operations [5,6]. The characterization of context in critical environments has 

also been an active topic of research in the information management and mission plan-

ning domains [7,8], to derive a formalized representation of user- and mission-related 

parameters that would influence the behavior of assistive technology. The Air Force 

recently funded research that combines these advances in the domain of distributed 

mission planning [9]. And the Army is actively supporting such research in the intelli-

gence domain to accelerate and improve the DCGS-A platform [10]. 

An in-depth understanding of the set of tasks comprising a workflow for a given role 

is required to sustain Principle 1 described above. We posit that task definitions should 

be multi-faceted and include such details as (1) the user activities that are undertaken 

to complete each task; (2) references associated with each task (e.g., documents, web 

sites, software applications, deadlines); and (3) topic(s) of interest. Essentially, our ap-

proach combines these three components as the basis of knowledge for programmed 

automation to monitor a user's workstation activity and identify their current task with 

some level of certainty, for the purpose of serving up actionable access to resources 

(e.g., software or files used in support of the detected task) or critical information (e.g., 

a news report on a topic of interest). Ultimately, this approach seeks to increase the 

efficiency of task completion and improve the quality of the task output. 

2 Model Generation and Training 

2.1 The Administrative Worker Use Case 

To begin development of task models, our team conducted a data collection with a con-

venience sample of 17 volunteer colleagues. Participants in this effort were directed to 

perform a set of common administrative tasks intended to be simple enough so that any 

adult with some familiarity with the Windows operating system and internet browsers 

could complete them in under an hour. Apart from being asked to use Gmail (for email) 

and Google Calendar (for event scheduling), the instructions of Table 1 were the only 

directives. These task instructions were displayed in a web page alongside SRI’s Task 

Assistant [11], a checklist interface for participants to mark tasks as “in progress” once 
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started, and “completed” when finished. This setup permitted the collection of interac-

tion data (i.e., what software, documents, and website they opened, closed, clicked on 

and so forth), labeled by task. Such labeled data are necessary to subsequently train and 

test machine learning algorithms that recognize tasks based on interaction activity. 

Table 1. Sample tasks and instructions for the administrative worker user case. Additional tasks 

include “5-Find Restaurant,” “7-Lookup Weather Forecast,” “8-Create Event Document,” “9-

Review Event Document,” “10-Send Email to Guest,” and “13-Email Travel Form.” 

# Task Instructions 

1 Check Email Read unread emails from the researcher (and follow instructions 

as they are explained in the email) 

2 Read Briefing Read through the PowerPoint briefing on your desktop; you may 

be asked questions about it 

3 Find Date Find the soonest date that works for a one-hour lunch for both 

you and Suzy MacFarland within the next month or so (use the 

Paptima@gmail.com Google Calendar); add an event into your 

calendar for this 

4 Complete Survey Complete Survey 1 (link found in email from researcher); open 

link into new tab in Chrome Browser 

6 Fill Out Travel Form Fill out the Travel Reimbursement Form (on the desktop) with 

expected expenses for travel to this restaurant 

11 Add Event To Calendar Add time in your own calendar to make a reservation at a restau-

rant the day before the lunch date(s) [i.e., schedule a reminder for 

yourself to call the restaurant] 

12 Review Travel Form Review the Travel Reimbursement Form and update it (to list the 

alternative restaurant and date in the notes section), save it  

  

The tasks in this data collection were intended to mimic the complexity of operational 

military tasks that intelligence analysts or command decision-makers would undertake: 

As a result of a triggering event, users would search for, gather, and evaluate infor-

mation from one or many sources, commit to a decision, and reformat those decisive 

details for dissemination to others. Furthermore, the tasks were designed to yield vari-

ety and overlap in the interactions and activities performed by participants and in the 

application or program they used to complete the task. Our assumption to justify such 

a structure in the data collection is that task recognition models trained on such data 

would be robust enough to distinguish tasks that appear similar in how they are done. 

 

2.2 Topic Modeling and Inference 

At the core of our approach is a Topic Model that links workflow to interaction activity 

by infering a topic match between both, thus enabling near real-time sensing and pre-

dicting of the tasks performed by the user (Principle 1). The inputs to this topic model 

are (a) a workflow that consists of a list of tasks (and, sometimes, their definitions) and 

(b) training data that consist of user-workstation interaction logs labeled by task. Each 

log line consists of five items: (1) Time: the unix time of the action; (2) Program Type: 
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the program being used (e.g., text document, spreadsheet, browser); (3) Document 

Name: the title of the open file or url for browser applications; (4) Action Type: cate-

gory of action (e.g., key press, mouse click, mouse over); and (5) Action Value: value 

associated to that action (i.e. what was clicked, typed, or hovered over). 

To convert these values to appropriate inputs to a classifier, we convert each input 

to a vector using the following methods. For the Program Type and Action Type vari-

ables we use one-hot encodings of each of the programs seen within the data. For the 

Document Name and Action Value components we use Latent Dirichlet Allocation 

(LDA), after some preprocessing, to vectorize each item. That is, we process the data 

by removing all stop words (e.g., the, and, a, then, as, etc.), then removing all digits and 

numbers from the set, and finally removing any non-English words unless they occur 

greater than N=50 times in the dataset (this discards miscellaneous urls or hyperlinks, 

but keeps commonly used ones that might not be in an English dictionary). After this 

processing, we generate topics via LDA based on each processed row within the da-

taset. Finally, the time field is used via an exponential recency-weighted average to 

provide predictions based on the previous set of actions, as opposed to providing pre-

dictions based on one action in isolation. 

 

2.3 Task Assessment and Prediction 

The task classifier uses the vector described in 2.2 as an input, concatenating one-hot 

action and program types with title and value topic distributions. Its output is a proba-

bility distribution of task prediction. We built our task prediction to be classifier-agnos-

tic, and therefore tested it with a set of different models. The following were all trained 

via skLearn [12]. Those models are: K-Nearest Neighbor (KNN), Support Vector Ma-

chine (SVM), Extra Trees Classifier (ERT), and Logistic Regression Cross-Validation 

(LogisticRegressionCV). Since these are all well documented, out-of-the-box models, 

we omit the details of their implementations from this paper. 

3 Evaluation: Comparing Models’ Performance at Predicting 

Current Task 

3.1 Method 

Data Preprocessing and Grouping. As users interact with the system, interaction data 

are streamed continuously to the model. Looking at individual interaction data points 

in isolation misses a richer interaction history that provides necessary context for mak-

ing accurate predictions. As such, we consider all interaction instances within the last 

30 seconds (i.e., a window) when predicting the user’s current task. For each interaction 

window, we (1) find k-nearest labeled actions and use each to “vote” for the classifica-

tion of a new action (via probability distribution; predict_proba from skLearn), and then 

(2) average all those classifications with an exponential recency-weighted average to 

generate a more accurate estimate. The result is a probability distribution table of all 

the tasks, i.e., the model’s normalized prediction of what the user is currently working 
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on. We consider the task with the highest probability to be the user’s current task (ties 

are broken randomly). Finally, although we did an evaluation on models where we 

pruned their feature space with feature selection and also conducted hyperparameter 

tuning with stratified k-fold cross-validation, these evaluations did not yield significant 

improvements and thus they are omitted from this paper. 

Baseline Models. In addition to the models discussed in Section 2.3, we evaluated the 

performance of two baseline prediction models. While these baseline models are not 

meant to be used in a task prediction system, they serve as an appropriate lower bound 

for our expectations of performance; if an advanced model cannot significantly outper-

form a baseline model, the advanced model is not suitable for use. These baseline mod-

els are uniform random (i.e., uniformly randomly predict a task) and majority class (i.e., 

always predict the majority task seen in training data, for the testing data). 

Evaluation Process. We employed a standard, cross-validation technique, using the 17 

separate data sets from the data collection (one per participant). We trained and tested 

the model 17 times with 17-fold cross-validations (16 trained, 1 tested, repeated for all 

test data). The primary metric in this evaluation is accuracy (ratio of correct task pre-

dictions to total number of trials); we also present a confusion matrix for one of the top-

performing models. Prior to each evaluation we removed consecutive duplicate entries 

as well as filtered a subset of actions. In particular, we removed all actions that took 

place in the task checklist tool (since this was purely for task labelling) as well as any 

desktop level actions occuring between tasks. The evaluation was conducted in Python 

[13], using NumPy [14], Pandas [15], skLearn [12], and Matplotlib [16] libraries. 

 

3.2 Results 

Overall Results. Fig. 1 shows the performance of each model by test participant. The 

KNN, ERT, and Logistic Regression CV models perform similarly on average, and 

better overall than the baseline models. Unsurprisingly, the Uniform Random and Ma-

jority models perform poorly, regardless of data set (participant). While a uniform ran-

dom model would have an accuracy of nearly 50% in a binary classification setting, 

this multi-class classification setting is significantly more difficult. As such, it is harder 

to achieve a ~75% accuracy than it is in a binary classification problem. 

Individual Results for KNN. KNN’s average accuracy across all participants was 

71.4%. While slightly lower on average than ERT (75.3%) or Logistic Regression 

(75.7%), we report detailed results for this method because it exemplifies key research 

questions of interest for our approach. The confusion matrix for KNN is shown in Fig. 

2.  In such a matrix, rows correspond to the ground-truth task label while columns cor-

respond to predictions by the model. Each cell shows the percentage of predictions that 

correspond to a ground-truth label aggregated across all data sets. The title indicates the 

total number of predictions (i.e., trials) and the average accuracy. 
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Fig. 1. The accuracy rate (% correct, y-axis) of explored models is plotted against that of baseline 

defaults (random and majority) per participant (x-axis). These data show that, for the most part, 

the explored models perform relatively similarly and significantly better than baselines. 

While KNN performed very well on some of the tasks (achieving an accuracy of up to 

84.8%), other tasks were not classified well. For example, the Review Travel Form 

task, where KNN achieved an accuracy of 26.2%, was more commonly misclassified 

as the Fill Out Travel Form task (62.5% of the time). It is interesting to note that these 

two tasks appear similar to each other, and that the correct task is not usually misclas-

sified as any other task (i.e., misclassifications are concentrated in one other class). 

While this appears to be the case for other task pairs that seem similar to each other 

(e.g., Add Event to Calendar, Find Date), Check Email appears to be one task where its 

misclassifications are distributed across two other tasks: Read Briefing and Complete 

Survey. Indeed, these three tasks do share important similarities: When users are com-

pleting the Read Briefing and Complete Survey tasks, they need to check their email 

first; the temporal dependencies between tasks, while not explicitly modeled, still ap-

pear to have an impact on classfiers’ abilities to distinguish between temporally related 

tasks. Finally, while Review Travel Form is commonly misclassified as Fill out Travel 

Form (62.5% of the time), the reverse is not true. Fill out Travel Form is only sometimes 

misclassified as Review Travel Form (15.5%). This asymmetry may suggest that there 

is an asymmetry in task similarity. Review Travel Form may be more similar to Fill 

Out Travel Form than Fill out Travel Form is to Review Travel Form. 
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Fig. 2. Confusion matrix for the cross-validation results of the KNN model. The diagonal repre-

sents the rate that the correct task was predicted for each task. Other cells show the rate that a 

different task was predicted for each task. Darker shades of blue indicate higher accuracy rates. 

Exploratory Evaluation with KNN. Because some users expressed privacy-related 

concerns regarding activity logging, we repeated our analyses while purposely omitting 

some inputs. Results are shown in Fig. 3. Note that we limited this exploratory analysis 

to KNN. Firstly, disabling keylogging yields a significant drop in average accuracy to 

33% (from 71.4%). Secondly, as many military users tend to be restricted to Windows-

based operating systems and Microsoft products like Internet Explorer or Edge internet 

browsers, our models may not be able to leverage browser-related inputs since those 

have only been implemented as a Chrome Extension. With this limitation, average 

model accuracy drops to 35%. Finally, we investigated what amount of data was re-

quired to produce a suitable, “good enough” model. We ran a series of tests (again using 

cross-validation in each step) where we trained with more data each time to observe the 

effects on accuracy. Results are plotted in Fig. 4. Accuracy plateaus near 75% but, 

somewhat surprisingly, it reaches that accuracy after only three training sessions. This 

suggests that these task recognition training methods will approach suitable accuracy 

after learning from three sessions in which individuals complete their entire workflow. 

Also worth noting is the fact that this quick learning model achieved suitable accuracy 

with data from three separate individuals performing the same tasks. The benefit to this 

is that it seems likely that, if individuals used different sets of actions to accomplish the 

same tasks, the model was still able to capture this sufficiently. 
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Fig. 3. The accuracy rate (% correct, y-axis) of our full KNN model is plotted against that of 

KNN without key press logging (KNN.NoKeyPress), KNN without web browser logging 

(KNN.NoWebBrowser), and baseline defaults (random and majority) per participant (x-axis). 

These data show that, without exception, having the full monitoring capabilities results in far 

superior prediction accuracy. 

4 Conclusion and Next Steps 

With the exception of a few tasks that were hard to classify, the best-performing clas-

sifiers predicted the majority of tasks correctly (approximately 75% accuracy on aver-

age). Additionally, this performance was achieved after the model was trained on few 

(three) workflows. These initial exploratory analyses only constitute a preliminary 

foray into the domain, and we have identified the following next steps. 

First, the dataset may benefit from a feature extraction step. Similar to how we use 

LDA for topic modeling to generate more features, we could also experiment with more 

temporally-explicit features such as “User’s Previous Action” or “Time Spent by User 

on Previous Action.” Such features will introduce dependencies between the samples 

in the training data, and it remains to be seen whether those will help or hinder the 

training process. Additional features can help improve the similarity and dissimilarity 

characterization of the tasks; if the overall dissimilarity of the tasks increases, it may 

make the classification problem easier and thus improve performance. Another varia-

tion could reorganize training such that each “sample” is actually a sequence of N sam-

ples. Doing so would change the classification task to “predict the user’s task based on 

this sequence of actions they took.” This would add a significant amount of variance 

into the dataset, which may also help or hinder the model training process. If there is 

too much variance/noise in the training data, the classifier may overfit to that noise 

instead of the underlying relationships (i.e., the classic bias-variance trade-off). 
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Fig. 4. In a series of cross-validation tests, we demonstrate that accuracy plateaus near 75% after 

training with workflow data from three participants (i.e., three individual sessions). 

Additionally, we must recognize the limitations of this approach. Our data collection 

was structured in a way to reduce much of the natural variability that occurs when users 

conduct tasks. This structure resulted in data distributions that were more similar to 

each other than would be the case in an unstructured or real-world setting. A much 

larger collection is thus needed so that the data distribution is representative of the un-

derlying ground truth. Such an increase in sample size would also permit testing more 

data-hungry methodologies, like deep learning (e.g., convolutional neural networks). 

Finally, it is critical that interventions by a proactive assistant based on such task 

identification also account for their likely disruptive effect. We intend to enable cogni-

tive state analysis as a means to tailor the modality, timing, and format of interventions 

to prevent a worsening of the user’s cognitive state. Recent work has shown some prom-

ise leveraging interactions in the identification of engagement vs. boredom [17], stress 

[18,19], and fatigue [20]. Such quantification of a user’s cognitive state acts, in turn, as 

additional data for the assistant to tailor its interventions for maximal effect. 
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