
Probabilistic Relational Agent-based Models
(PRAM)?

Paul R. Cohen and Tomasz D. Loboda

University of Pittsburgh, Pittsburgh, PA, USA {prcohen,tol7}@pitt.edu

Abstract. Redistribution systems iteratively redistribute mass between
groups under the control of rules. pram is a framework for building re-
distribution systems. We discuss the relationships between redistribu-
tion systems, agent-based systems, compartmental models and Bayesian
models. pram puts agent-based models on a sound probabilistic footing
by reformulating them as redistribution systems. This provides a basis
for integrating agent-based and probabilistic models. pram extends the
themes of probabilistic relational models and lifted inference to incor-
porate dynamical models and simulation. We illustrate pram with an
epidemiological example.
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1 Introduction

pram is a framework for building redistribution models and simulating their
dynamics. In pram models, groups are defined by attributes and the dynamics
of redistribution are generated by rules that probabilistically change attribute
values. pram modelers specify these rules and some initial groups, but they need
not anticipate all possible groups; pram generates groups automatically. pram
grows and shrinks groups by redistributing their masses to other groups, some
of which emerge during a pram simulation.

We built pram to unify several kinds of models in a single framework. pram
incorporates aspects of compartmental models (e.g., [1]), agent-based models
(ABMs, e.g., [5,3]) and probabilistic relational models (PRMs; e.g., [2]). Simu-
lation of pram models is a kind of lifted inference [7]. We suspect that all these
kinds of models are fundamentally very similar.

2 An Example

Consider the spread of influenza in a population of students at two synthetic
schools, Adams and Berry. To simplify the example, assume that flu spreads only
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at school. Many students at Adams have parental care during the day, so when
they get sick they tend to recover at home. Most students at Berry lack parental
care during the day, so sick students go to school. Students may be susceptible,
exposed or recovered.

Fig. 1. The left panel shows the proportions of students exposed to flu at the artificial
Adams and Berry schools over 50 time steps. The right panel shows 23 proportions of
exposed students at 23 schools in Pittsburgh.

Although Adams and Berry are identical in all respects other than the avail-
ability of parental care, the dynamics of flu, as simulated by pram, are different
at these schools, as shown in the left side of Figure 1. The reasons are that the
probability of contracting flu at school depends on proportion of people who
have it, and 80% of Berry students go to school when they are sick, while 60% of
Adams students stay home. Similar dynamics are seen for 23 schools in Pittsburgh.
In this case, we specified that the probability of going home when sick is 0.9 for
a pre-schooler, 0.5 for a middle-schooler and .1 for a high-school student.

pram redistributes the student populations in these examples between sev-
eral groups. There are susceptible, exposed and recovered groups; and these
levels of flu are crossed with location – home or school – and also with partic-
ular schools – Adams or Berry in the first example and 23 schools in the second.
Indeed, in the second example, pram begins with 433 groups and generates 2064
more groups as it simulates the dynamics of flu within schools.

3 Elements of PRAM Models

pram models comprise entities and rules. At present, entities are groups or sites.
Groups have counts that are redistributed among groups, and they have two
kinds of attributes: Unary features, F , such as flu and sex, and binary relations,
R such as has location. Groups are related to sites and sites aggregate informa-
tion about the groups to which they are related in the sense that the term is
used in [2]. For example, a site might calculate the total mass of related groups
that are exposed to flu. All forward relations between groups and sites, such as
g1.has school = Adams relate one group to one site. Inverse relations relate one site
to a set of groups. Thus, if g1.has school = Adams and gg.has school = Adams, the
inverse relation Adams.school of returns {g1,g2}. Inverse relations are important
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for answering queries such as “which groups attend g1’s school?” Formally this
would be g1.has school.school of, which would return {g1,g2}. By mapping over
entities it is easy to answer queries such as “what is the proportion of students
at school g1 that has been exposed to flu?” In effect, pram implements a simple
relational database.

rule_flu_progression():

if group.feature.flu == 's':

p_inf = n@_{feature.flu == 'e'} / n@ # n@ - count at the group's location

dm p_inf -> F:flu = 'e', F:mood = 'annoyed'

nc 1 - p_inf

if group.feature.flu == 'e':

dm 0.2 -> F:flu = 'r', F:mood = 'happy'

dm 0.5 -> F:flu = 'e', F:mood = 'bored'

dm 0.3 -> F:flu = 'e', F:mood = 'annoyed'

if group.feature.flu == 'r':

dm 0.1 -> F:flu = 's' # dm - distribute mass

nc 0.9 # nc - no change

rule_flu_location():

if group.feature.flu == 'e':

if group.feature.income == 'l':

dm 0.1 -> R:@ = group.rel.home

nc 0.9

if group.feature.income == 'm':

dm 0.6 -> R:@ = group.rel.home # R:@ - location the group is at

nc 0.4

if group.feature.flu == 'r':

dm 0.8 -> R:@ = group.rel.school

nc 0.2

Fig. 2. Two pram rules. rule flu progression changes the flu and mood features of a
group; rule flu location changes a group’s @ relation which denotes that group’s current
location. The distribute-mass operation is encode as dm and can set features F and
relations R with a given probability.

Besides entities, pram models have rules that apply to groups. All rules have
mutually exclusive conditions, and each condition is associated with a probability
distribution over mutually exclusive and exhaustive conjunctive actions. Thus,
a rule will return exactly one distribution of conjunctive actions or nothing at
all if no condition is true. For an illustration, look at the mutually exclusive
clauses of rule flu progression in Figure 2, and particularly at the middle clause:
It tests whether the group is exposed to flu (i.e., flu == e) and it specifies a
distribution over three conjunctive actions. For example, the first action, which
has probability 0.2, is that the group recovers and becomes happy.

Next, consider the first clause, which calculates the proportion of flu cases
at the group’s location. This proportion subsequently serves as a probability
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of infection and is evaluated anew whenever the rule is applied to a group.
That is how rules can test conditions that change over time. Finally, the third
clause represents the transition from recovered back to susceptible, whereupon
re-exposure becomes possible.

In addition to changing groups’ features, rules can also change relations. The
second rule in Figure 2 says, if a group is exposed to flu and is low-income then
change the group’s location from its current location to home with probability 0.1
and stay at location with probability 0.9. If, however, the group is exposed and
is middle-income, then it will go home with probability 0.6 and stay put with
probability 0.4. And if the group has recovered from flu, whatever its income
level, then it will go to school with probability 0.8.

4 Groups are defined by their attributes

pram groups are defined by their features and relations in the following sense:
Let F and R be features and relations of group g, and let n be the count of g.
For groups i and j, if F i = F j and Ri = Rj , then pram will merge i with j and
give the result a count of ni + nj . Conversely, if a rule specifies a distribution
of k changes to F i (or Ri) that have probabilities p1, p2, . . . , pk, then pram will
create k new groups with the specified changes to F i (or Ri) and give them
counts equal to (p1ni), (p2ni), . . . , (pkni).

To illustrate, consider a pram system with just a single attribute, flu, which
takes values s, e and r. Figure 3 illustrates how groups are created, split and
merged, and how their counts change.

Suppose pram starts with two groups g1 and g2 (denoted by double-lined
boxes) with flu=s and flu=e, and counts n1 and n2, respectively. A rule specifies
that susceptible people become exposed with probability p, so pram generates
two potential groups (denoted by dotted lines) and redistributes the count of
g1 between them in proportions p, 1 − p. As groups in this simple example are
defined by a single feature, these potential groups are identical with g2 and g1,
respectively, so pram will redistribute n1 to g2 and g1. Redistribution means
that the entire count of a group, n1 in this case, is distributed, so g1’s new count
will be n1(1 − p) while the count of g2 will be incremented by n1p. However,
something similar is going on with g2: A rule specifies that some exposed people
will recover with probability q, so pram spawns two potential groups with counts
of n2 q and n2 (1− q), and distributes the first to the new recovered group and
the second back to g2. Finally, because the potential group labeled r doesn’t
already exist, pram makes it a real group (with a solid line) and gives it the
name g2 1, denoting that it is the first real group created by the action of rules
on group g2. After all this, the counts for the groups are:

g1 : n1(1− p)

g2 : n1p + n2(1− q)

g2 1 : n2q

Clearly, the system in Figure 3 can be iterated with these counts as a new
starting point. Repeated iterations will yield the dynamics of group counts.
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Fig. 3. How pram splits, merges and creates groups to redistribute group counts.

pram isn’t necessary for this simple example, which mirrors the SIR com-
partmental developed by Kermack and McKendrick in 1927 and is well under-
stood [4]. However, pram handles vastly more complicated models, allowing
more features, more groups, relations between groups, multiple rules applying
simultaneously to groups, and nonstationary probabilities. pram guarantees that
group counts always obey the probabilities associated with rules, and that the
order of rules and clauses within rules, and the order of application of rules to
groups, have no effects on counts.

5 The PRAM Engine: Redistributing Group Counts

The primary function of the pram engine is to redistribute group counts among
groups, as directed by rules, merging and creating groups as needed, in a proba-
bilistically sound way. To illustrate the details of how pram does that, suppose
a pram model starts with just the two rules in Figure 2 and two extant groups:

name flu mood location count

g1 s happy adams 900

g2 e annoyed adams 100

The features for these groups are F1={flu:s, mood:happy} and F2={flu:e,
mood:annoyed}, and both groups have the same relation:R1 = R2 ={has school:adams}.

The pram redistribution algorithm proceeds in three steps:

Redistribution Step 1: Generate Potential Groups. When rule flu progression is
applied to g1 it calculates the infection probability p inf at adams to be 100/(100+
900) = 0.1. g1 triggers the first clause in the rule because flu=s. So the rule
specifies that the g1.flu changes to e with probability 0.1 and changes to s with
probability 0.9. pram then creates two potential groups:

name flu mood location count

g1 1 e annoyed adams 90

g1 2 s happy adams 810
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These potential groups specify a redistribution of n1, the count of g1. We will
see how pram processes redistributions, shortly.

Of the two rules described earlier, rule flu location does not apply to g1, but
both apply to group g2. When multiple rules apply to a group, pram creates the
cartesian product of their distributions of actions and multiplies the associated
probabilities accordingly, thereby enforcing the principle that rules’ effects are
independent (dependent effects should be specified within rules). To illustrate,
rule flu progression specifies a distribution of three actions for groups like g2
that have flu=e, with associated probabilities 0.2, 0.5, 0.3; while rule flu location

specifies two locations for groups that have flu=e and flu=m, with probabilities
0.6 and 0.4. Thus, for g2, there are six joint actions of these two rules, thus six
potential groups:

name flu mood location count

g2 1 r happy home 100 · 0.2 · 0.6 = 12.0

g2 2 r happy adams 100 · 0.2 · 0.4 = 8.0

g2 3 e bored home 100 · 0.5 · 0.6 = 30.0

g2 4 e bored adams 100 · 0.5 · 0.4 = 20.0

g2 5 e annoyed home 100 · 0.3 · 0.6 = 18.0

g2 6 e annoyed adams 100 · 0.3 · 0.4 = 12.0

These groups redistribute the count of g2 (which is 100) by multiplying it by
the product of probabilities associated with each action.

Redistribution Step 2: Process Potential Groups. pram applies all rules to all
groups, collecting potential groups as it goes along. Only then does it redistribute
counts, as follows:

1. Extant groups that spawn potential groups have their counts set to zero;
2. Potential groups that match extant groups (i.e., have identical Fs and Rs)

contribute their counts to the extant groups and are discarded;
3. Potential groups that don’t match extant groups become extant groups with

their given counts.

So: Extant groups g1 and g2 have their counts set to zero. Potential group
g1 2 has the same features and relations as g1 so it contributes its count, 810, to
g1 and is discarded. Likewise, potential group g1 1 matches g2 so it contributes
90 to g2 and is discarded. Potential group g2 6 also matches g2, so it contributes
12 to g2 and is discarded, bringing g2’s total to 102. Potential groups g2 1, g2 2,
g2 3, g2 4, and g2 5 do not match any extant group, so they become extant groups.
The final redistribution of extant groups g1 and g2 is:

name flu mood location count

g1 s happy adams 810.0

g2 e annoyed adams 102.0

g2 1 r happy home 12.0

g2 2 r happy adams 8.0

g2 3 e bored home 30.0

g2 4 e bored adams 20.0

g2 5 e annoyed home 18.0
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By delaying the processing of potential groups until all rules have been ap-
plied to all extant groups, pram avoids order effects. Imagine that pram ap-
plied rule flu progression to g1 and immediately processed the resulting potential
groups, and then applied the rule to g2. Processing potential group g1 1 would
make n2 = 100 + 90, and applying the rule to g2 would redistribute 190 be-
tween g2 1 and g2 2. Whereas, processing the groups in the opposite order would
redistribute 80 between g2 1 and g2 2. pram eliminates effects of the order of
processing of groups. It also eliminates effects of the order of application of rules
to groups, as we shall see.

Redistribution Step 3: Iterate. pram is designed to explore the dynamics of group
counts, so it generally will run iteratively. At the end of each iteration, all non-
discarded groups are marked as extant and the preceding steps are repeated: All
rules are applied to all extant groups, all potential groups are collected, potential
groups that match extant groups are merged with them, and new extant groups
are created. A second iteration produces one such new group when the third
clause of rule flu progression is applied to g2 1:

name flu mood location count

g2 1 1 s happy home 0.24

The reader is invited to calculate the full redistribution resulting from a
second iteration (it is surprisingly difficult to do by hand).1

6 Exploring Population Dynamics with PRAM

Extending an earlier example, suppose the schools Adams and Berry each enroll
1000 students, of whom 900 are susceptible and 100 are exposed, evenly divided
between males and females. All Adams students are middle-income and all Berry

students are low-income. No students are pregnant, but we add a rule that creates
pregnancies in groups of females with probability 0.01. The initial eight extant
groups are:

name flu sex income pregnant mood location count

g1 s f m no happy adams 450

g2 e f m no annoyed adams 50

g3 s m m no happy adams 450

g4 e m m no annoyed adams 50

g5 s f l no happy berry 450

g6 e f l no annoyed berry 50

g7 s m l no happy berry 450

g8 e m l no annoyed berry 50

The dynamics of flu=e at the two schools is presented in Figure 4. The left-
most panel shows the proportion of students exposed to flu at each school. Berry
experiences a strong epidemic, with more than half the students exposed, whereas

1 The second iteration produces n1 = 706.632, n2 = 119.768, n2 1 = 26.4, n2 1 1 =
0.24, n2 2 = 25.6, n2 3 = 60.6, n2 4 = 24.4, n2 5 = 36.36.
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Fig. 4. The left panel shows the proportion of students exposed to flu at Adams and
Berry. The middle and right panels show the proportions of susceptible, exposed and
recovered students at each school. The simulation ran for 100 iterations.

Adams has a more attenuated epidemic because its students are middle-income and
can stay home when they are exposed, thereby reducing the infection probability
at the school. Adams’ endemic level of flu is close to zero whereas Berry’s endemic
level is around 20%. However, resurgent flu caused by recovered cases becoming
susceptible again is more noticeable at Adams (around iteration 45). The only
difference between Adams and Berry is that 60% of Adams students stay home when
they get flu, whereas 10% of Berry students do, but this difference has large and
persistent consequences.

7 Discussion

pram incorporates elements of compartmental models, agent-based models, Markov
chain models, dynamic Bayesian models, and probabilistic relational models in a
single framework. From compartmental models it takes the idea of homogenous
groups (e.g., the group of all individuals exposed to flu), but unlike in com-
partmental models, pram allows for thousands of groups, relationships between
groups, and non-stationary probabilities of transitions between groups. Also,
pram generates groups automatically, whereas compartmental models require
the modeler to specify all the compartments at the outset.

By working with groups rather than individuals, pram implements lifted
inference. The connection between pram models and probabilistic models is
that counts are proportional to posterior probabilities conditioned on attributes
such as flu and has school and on the actions of rules that change attributes.
pram applies rules repeatedly to groups, creating novel groups and merging
identical groups, thereby simulating the dynamics of groups’ counts. It is in
many respects like Probabilistic Relational Models (PRMs) in which groups are
defined by their features and relations, but it is designed for simulation and for
exploring the dynamics of group counts. There are strong affinities between pram
models, dynamic Bayesian networks and PRMs, and we are currently working on
methods to translate one into another. For example, we have already established
model equivalence between pram and discrete-time time-homogenous and time-
inhomogeneous Markov chains with finite state space. In fact, we have used
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these Markov chains to elegantly express some of the well-known epidemiological
models: SIS, SIR, and SIRS.

pram models may also be viewed as a kind of agent-based model (ABM) in
which identical agents constitute groups. This idea offends the tenet of ABMs
that agents are unique, but as a practical matter, agents are not unique. Consider
the roughly two million K12 students in Allegheny County. After mapping age
to grade level, mapping nine race classes to four, mapping household size to just
three levels, mapping individual households to 350 regions, and ignoring sex, we
obtained just 3729 groups. For the purposes of simulating flu dynamics, these
mappings are more than generous: Flu affects girls and boys the same, so sex is
irrelevant; and race classes might or might not affect flu transmission. Instead
of assuming that agents are unique, pram models assume that all members of a
group are functionally identical. Two entities i and j are functionally identical
if F i = F j and Ri = Rj after removing all features from F i and F j and all
relations from Ri and Rj that are not mentioned in any rule. Said differently,
even if two entities have different features and relations, if these don’t affect the
behavior of a set of rules, then the rules treat these entities in the same way.

The idea of functionally identical groups leads to a population synthesis
method. Any feature or relation that is not mentioned in a rule need not be in
groups’ F or R, so the only attributes that need to be in groups’ definitions
are those that condition the actions of rules. Motivated by this observation, we
have built a compiler that automatically creates an initial set of groups based
on (1) a database that provides F and R for individuals and (2) a set of rules.
The compiler eliminates from F and R those attributes that aren’t queried or
changed by rules, thereby collapsing a population of individuals into a minimal
number of groups. With the help of the compiler, we have been able to construct
simulations of an infectious disease spread in the Allegheny County based on a
public database of synthetic population of over two million agents.

pram code is available on github [6]. It has run on much larger problems,
including a simulation of daily activities in Allegheny County that involved more
than 200,000 groups. pram runtimes are proportional to ν the number of groups,
not the group counts, so pram can be much more efficient than agent-based
simulations (ABS). Indeed, when group counts become one, pram is an ABS,
but in applications where agents or groups are functionally identical pram is
more efficient than ABS. Because ν depends on the numbers of features and
relations, and the number of discrete values each can have, pram could generate
enormous numbers of groups. In practice, the growth of ν is controlled by the
number of groups in the initial population and the actions of rules. Typically, ν
grows very quickly to a constant, after which pram merely redistributes counts
between these groups. In the preceding example, the initial ν = 8 groups grew
to ν = 44 on the first iteration and ν = 52 on the second, after which no new
groups were added.

By attempting to model processes in various domains we are currently trying
to understand the expressive power of pram and its limitations. For example, we
have implemented a human segregation model which simulates human migration
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as a function of similarity and dissimilarity between members of communities [8].
We have also implemented the Poisson point process and subsequently used it
to model the incidence of Alzheimer’s Disease.

Other research directions we are pursuing include: theoretical work on the
equivalence between pram models and other model types; investigating the rela-
tionship between pram and dynamical systems specified via ordinary differential
equations (e.g., the Lotka-Volterra population dynamics model); accounting for
continuous group features (e.g., income level specified as a probability distribu-
tion) and continuous-time simulations (e.g., implementing interacting particle
systems); extending the definition of population (e.g., population of values);
allowing changes to the total population mass (e.g., birth and death in epidemi-
ological models); ensuring proper amalgamation of different models within the
same simulation (e.g., guaranteeing the lack of order effects even when groups
from different models interact), and (7) investigating the pedagogical value of
pram (i.e., deploying it as a teaching tool).

In sum, it appears that several common modeling frameworks are identical
with or approximated by redistribution systems and can be implemented in
pram.
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