Probabilistic Relational Agent-Based Models

Tomasz D. Loboda Paul R. Cohen

University of Pittsburgh

1. Motivation

- What
 - Accelerate modeling of all kinds
 - Target language for semi-automated construction of probabilistic relational agent-based models (PRAMs)
- How
 - By combining agent-based models with probability theory
 - Effectively arriving at a mass redistribution system

2. Elements of a PRAM

- Entities
 - Groups
 - Mass (e.g., 500 agents)
 - Attributes (e.g., age, sex, flu)
- Relations (e.g., school, hospital)
 Sites

 Locations agents can be @

 Rules

 Animate mass redistribution

4. Semi-Automated Construction

- Static and dynamic rule analysis
 - Identify essential group attributes and relations
- Automatic population generation from rel. databases

5. Examples of Supported Rules/Models

- Fundamental stochastic processes
 - Poisson point process
- Probabilistic
 - Finite state-space time-(in)variant Markov chain
- Epidemiological
- SIS, SIR, SIRS
- Segregation model

6. On-Going Efforts

3. Modeling Levels

- Domain Invoke domain-specific models (e.g., SIRS)
- Class Invoke a class of processes or models (e.g., MC)
- Rule Write rules directly
- Example: The SIRS model

- β transmission rate
- γ recovery rate
- α immunity loss rate (α = 0 implies life-long immunity)

3.1. Domain Level (example in Python)

SIRSModel('flu', $\beta=0.05$, $\gamma=0.50$, $\alpha=0.10$)

3.2. Class Level (example in Python)

 β , γ , $\alpha = 0.05$, 0.50, 0.10

- Theoretical work on the equivalence between PRAMs and other model types
- Investigating the relationship between PRAMs and dynamical systems specified via ordinary differential equations
- Accounting for continuous group features and continuous-time simulations
- Extending the definition of population
- Allowing changes to the total population mass
- Ensuring proper amalgamation of different models within the same simulation
- Investigating the pedagogical value of PRAMs

Simulation results based on a synthetic population of ~200,000 Allegheny County students School with 88% of Low-Income Students


```
transition_matrix = {
    's': [1 - β, β, 0.00],
    'i': [ 0.00, 1 - γ, γ],
    'r': [ α, 0.00, 1 - α]
}
TimeInvMarkovChain('flu', transition_matrix)
```

3.3. Rule Level (more elaborate example in pseudo-code)

```
rule_flu_progression():
   if group.feature.flu == 's':
       p_inf = n@_{feature.flu == 'i'} / n@ # n@ - count at the group's location
       dm p_inf -> F:flu = 'i', F:mood = 'annoyed'
       nc 1 - p_inf
   if group.feature.flu == 'i':
       dm 0.2 -> F:flu = 'r', F:mood = 'happy'
       dm 0.5 -> F:flu = 'i', F:mood = 'bored'
       dm 0.3 -> F:flu = 'i', F:mood = 'annoyed'
   if group.feature.flu == 'r':
       dm 0.1 -> F:flu = 's'  # dm - distribute mass
       nc 0.9
                   # nc - no change
rule_flu_location():
   if group.feature.flu == 'i':
       if group.feature.income == '1':
           dm 0.1 -> R:@ = group.rel.home
           nc 0.9
       if group.feature.income == 'm':
           dm \ 0.6 \rightarrow R: @ = group.rel.home # R: @ - location the group is at
           nc 0.4
```

if group.feature.flu == 'r':
 dm 0.8 -> R:@ = group.rel.school
 nc 0.2

3.4. Rule Level (ODEs support in development; Python)

 $\alpha = 1.1 # baboon$ $\beta = 0.4$ $\delta = 0.1 # cheetah$ $\gamma = 0.4$

```
def f_lotka_volterra(t, state):
    x,y = state
    return [x * (\alpha - \beta*y), -y * (\gamma - \delta*x)]
```

r = ODESystem(f_lotka_volterra, ['x', 'y'], dt=0.1)

Simulation().add([r, Group(n=1, attr={'x':10, 'y':10})]).run(1000)) # initial (10,10)

h = r.get_hist() # time series of computed values
plt.plot(h[0], h[1][0], 'b-', h[0], h[1][1], 'r-') # red-predator; blue-pray

sp_id	integer	200169				
school_id	integer	350		school 0.67	school	
income_value	integer	2125				
income	text	2	✓ income 1.0			
age	integer	16				
sex	text	2				
race	integer	8				
Probes						
ProbesSimulation						
Probes Simulation CONTROL	RUI	_ES	POPULATI PR	OBES SETTINGS		
Probes Simulation CONTROL Gents: 200169 Groups: 696 Hites: 351 RESET THE PO	RUL	-ES	POPULATI PR	OBES SETTINGS		