
/momacs/pram

1. Motivation
•  What
• Accelerate modeling of all kinds
• Target language for semi-automated construction of

probabilistic relational agent-based models (PRAMs)
•  How
• By combining agent-based models with probability theory
• Effectively arriving at a mass redistribution system

Probabilistic Relational Agent-Based Models
Tomasz	D.	Loboda	

2. Elements of a PRAM
•  Entities
• Groups
• Mass (e.g., 500 agents)
• Attributes (e.g., age, sex, flu)
• Relations (e.g., school, hospital)

• Sites
• Locations agents can be @

•  Rules
• Animate mass redistribution

rule_flu_progression():
				if	group.feature.flu	==	's':	
								p_inf	=	n@_{feature.flu	==	'i'}	/	n@				#	n@	-	count	at	the	group's	location	
								dm					p_inf	->	F:flu	=	'i',	F:mood	=	'annoyed'	
								nc	1	-	p_inf	
				if	group.feature.flu	==	'i':	
								dm	0.2	->	F:flu	=	'r',	F:mood	=	'happy'	
								dm	0.5	->	F:flu	=	'i',	F:mood	=	'bored'	
								dm	0.3	->	F:flu	=	'i',	F:mood	=	'annoyed'	
				if	group.feature.flu	==	'r':	
								dm	0.1	->	F:flu	=	's'				#	dm	-	distribute	mass	
								nc	0.9																			#	nc	-	no	change	

6. On-Going Efforts

•  Theoretical work on the equivalence between PRAMs and
other model types

•  Investigating the relationship between PRAMs and
dynamical systems specified via ordinary differential
equations

•  Accounting for continuous group features and
continuous-time simulations

•  Extending the definition of population
•  Allowing changes to the total population mass
•  Ensuring proper amalgamation of different models within

the same simulation
•  Investigating the pedagogical value of PRAMs

Paul	R.	Cohen	
University	of	Pittsburgh	

s s

e
e

r

e
p

1-p

q

1-q

g1

g2

g2_1

r

rule_flu_location():	
				if	group.feature.flu	==	'i':	
								if	group.feature.income	==	'l':	
												dm	0.1	->	R:@	=	group.rel.home	
												nc	0.9	
								if	group.feature.income	==	'm':	
												dm	0.6	->	R:@	=	group.rel.home				#	R:@	-	location	the	group	is	at	
												nc	0.4	
				if	group.feature.flu	==	'r':	
						dm	0.8	->	R:@	=	group.rel.school	
						nc	0.2	

α	=	1.1		#	baboon	
β	=	0.4	
δ	=	0.1		#	cheetah	
γ	=	0.4	
	
def	f_lotka_volterra(t,	state):	
				x,y	=	state	
				return	[x	*	(α	-	β*y),	-y	*	(γ	-	δ*x)]	
	
r	=	ODESystem(f_lotka_volterra,	['x',	'y'],	dt=0.1)	
	
Simulation().add([r,	Group(n=1,	attr={'x':10,	'y':10})]).run(1000))		#	initial	(10,10)	
	
h	=	r.get_hist()		#	time	series	of	computed	values	
plt.plot(h[0],	h[1][0],	'b-',	h[0],	h[1][1],	'r-')				#	red-predator;	blue-pray	

3. Modeling Levels
•  Domain Invoke domain-specific models (e.g., SIRS)
•  Class Invoke a class of processes or models (e.g., MC)
•  Rule Write rules directly

•  Example: The SIRS model
• β	- transmission rate
• γ	- recovery rate
• α	- immunity loss rate (α = 0 implies life-long immunity)

5. Examples of Supported Rules/Models
•  Fundamental stochastic processes
•  Poisson point process

•  Probabilistic
•  Finite state-space time-(in)variant Markov chain

•  Epidemiological
•  SIS, SIR, SIRS

•  Segregation model

β,	γ,	α	=	0.05,	0.50,	0.10	
transition_matrix	=	{	
				's':	[1	-	β,					β,		0.00],	
				'i':	[0.00,	1	-	γ,					γ],	
				'r':	[α,		0.00,	1	–	α]	
}	
TimeInvMarkovChain('flu',	transition_matrix)	

SIRSModel('flu',	β=0.05,	γ=0.50,	α=0.10)	

3.1. Domain Level (example in Python)

3.2. Class Level (example in Python)

3.3. Rule Level (more elaborate example in pseudo-code)

3.4. Rule Level (ODEs support in development; Python)

Simulation results based on a synthetic population of ~200,000 Allegheny County students

4. Semi-Automated Construction
•  Static and dynamic rule analysis
•  Identify essential group attributes and relations

•  Automatic population generation from rel. databases

S I R
β γ

α

