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Abstract. We apply a variation of Socio-cultural Cognitive Mapping (SCM) to 
computer malware features explored previously by Saxe and Berlin that charac-
terized malware binaries as benign or malicious based on 1,024 program features 
derived from a deep neural network-based detection system. In this work, we 
model the features as attributes within a latent spatial domain using a weighted 
consensus graph representation to visualize and analyze the malware binary com-
munities. The data used in our analysis is extracted from a remote access trojan 
(RAT) family named Sakula that first appeared in 2012, and has been used to 
enable an adversary to run interactive commands and execute remote program 
functions. Our results show that by SCM we were able to identify distinct mal-
ware communities within the malware family, which revealed insights into the 
overall structure of the various binaries. Further work will include surveying 
other malware families using SCM and evaluating their efficacy in determining 
features that can be used to find core malware communities. 

Keywords: malware analysis, social network analysis, cognitive mapping, 
graph learning. 

1 Introduction 

Cyber-attacks are a critical problem for society, and malware is used by attackers in a 
large class of cyber-attacks. The volume of malware produced is overwhelming, with 
hundreds of thousands of new samples discovered every day. The vast majority of mal-
ware samples are actually variants of existing malware, produced by transforming or 
obfuscating an existing sample in such a way that it can evade detection by security 
products and other defenses. Categorizing related malware into families and under-
standing communities of samples within a malware family can aid malware analysts 
and security operations in prioritizing responses and defenses for new malware sam-
ples. 

While there are a number of existing techniques for analyzing malware [1], one ap-
proach that has not been explored significantly involves analyzing features from mal-
ware samples using social network analysis techniques. 
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Social network analysis (SNA) involves structural intuition based on ties linking so-
cial actors [2]. If we view malware binary samples as individual actors in a network, 
then we can harness many of the SNA methods to analyze commonalities within the 
binaries.  SNA methods are useful because they are grounded in systematic empirical 
data, draw heavily from graph theory, and rely on the use of mathematical models. As 
people do not act in a manner independent of their social environment, these binary 
samples, which are created by people, exhibit similar traits and are subject to patterns, 
clusters, and structural mappings. 

The remainder of this paper is organized as follows. In Section 2, we provide an 
overview of the malware family that is investigated and the malware analysis technique 
used to extract features from the malware data set. Section 3 presents the Socio-cultural 
Cognitive Mapping (SCM) method and Weighted Consensus Graph procedure that are 
applied to the malware feature data. In Section 4, we explore the SCM results in more 
detail, comparing the clustering results of Weighted Consensus Graph with those from 
the commonly used similarity analysis tool, ssdeep [3]. Finally, we provide some con-
clusions and future work. 

2 The Data 

The data used in our analysis comes from the Sakula family of malware which repre-
sents variations of remote access trojan (RAT) tools that seek to target victims in the 
aerospace, government, healthcare, and technology sectors. This RAT operates on Win-
dows platforms and has been known by aliases Sakurel and VIPER. Many researchers 
have analyzed this RAT, and have noted its stealth and effectiveness [4]. Namely, Sa-
kula allows an adversary to run interactive commands through a back-door, then down-
load components, and execute additional components under the disguise of being legit-
imate software. The Sakula RAT first appeared in 2012. Since that time robust sets of 
labeled malware data have been available to the security community, and commercial 
threat intelligence has exponentially increased in light of the growing and persistent 
threat posed by malware [1]. Concurrent with the availability of the avalanche of threat 
data is the need to provide suitable means to organize, manipulate, and then analyze it. 

We chose to use a feature extraction method proposed and outlined by Berlin and 
Saxe [5] to build our Sakula malware dataset for further analysis. This deep neural net-
work-based extraction method uses four static feature domains to achieve high accuracy 
malware classification results. The first is the byte-entropy feature vector. It is produced 
by concatenating the row values of a two-dimensional histogram constructed from byte-
entropy value pairs of all bytes in a given 1024-byte sliding window. New entropy val-
ues and byte-entropy pairs are computed for each window, which traverses the file us-
ing a step size of 256 bytes. This first extraction process provides byte values with an 
added entropy “context”, which lends itself to preserve as much information as possi-
ble. Next is the imports feature vector. It is generated by hashing library and library 
function names to the range [0, 255), and measuring the frequency counts of each re-
sulting hash value. The idea behind the use of the libraries is that it may capture the 
semantics of internal function calls that binary files rely on. This may allow files with 
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a combination of suspicious imports similar to known malware families to be detected 
and clustered. Third is the printable strings feature vector. It is produced by hashing all 
printable strings of length 6 or more (in the ASCII printable range) to the range [0, 16), 
pairing each string’s hash with the log of its length, constructing a two-dimensional 
feature vector mapping those hash value / log-length pairs, and then concatenating the 
rows of the histogram. Finally, the metadata feature vector is produced by extracting 
numerical features from a file’s Portable Executable (PE) packaging and aggregating 
those features into a 256-length array. This allows heuristically suspicious aspects of a 
given binary to be identified and matched against known malware families. 

At the conclusion of the feature extraction process we have a comma separated val-
ues (csv) file with 1,024 feature columns and 289 rows. Each row (except the first row, 
which is the column header) represents a unique malware binary file. The first column 
identifies the malware binary number, followed by 1,024 columns of features extraction 
aggregates. Additional metadata columns are the binary MD5 hash, which is also the 
malware’s file name, followed by a label assigned to the binary – in this experiment all 
files are labeled malware. 

3 SCM Method 

At a high level, the method to find the latent network of the malware was done as fol-
lows: 1) Extract features from the malware. 2) Use Socio-cultural Cognitive Map-
ping [6] to place each of the malware samples into a latent space by their features. 3) 
Use a Weighted Consensus Graph to extract the latent graph of the points in the latent 
space, and then analyze the latent network. 

We begin with an overview of the SCM process. The first step in the SCM process 
is to convert the data matrix into a frequency matrix, where the entries are the counts 
of the shared levels of every attribute between each of the malware samples. It should 
be noted that all attributes are considered equal when contributing to the shared counts; 
there is no distinction between attributes. So, the frequency matrix is of size number-
of-samples by number-of-samples, and has entries that are the counts of the number of 
same attribute values for all attributes of the data matrix between each sample and every 
other sample. 

Next, we find the positions in a latent space for each of the data points such that the 
function determining the distances between points produces fitted frequencies that are 
as near as possible to the observed frequencies from the previous step. The fitted fre-
quencies for each data point are calculated by: 

  (1) 

where i is the row factor term, j is the column factor term, and d is the row and 
column correlation factor, where a is an attenuation term. The term a controls how 
much impact the interaction between two entities has on their co-occurrence frequency. 
A smaller a result in the distance affecting the frequency counts less as the distance 
between any given data points increases. When a = 2 the interaction between row and 
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column variables is modeled as a Gaussian Distribution. The distance metric, d, is de-
fined as the Minkowski distance: 

  (2) 

where M is the power setting of the metric that determines the space that the points 
are mapped into (i.e., M=2 produces a Euclidean distance and space). So, the SCM 
process then proceeds as an optimization problem where the points of each sample are 
inferred in a latent space with the target function as the χ^2-value between the fitted 
frequencies, F(i,j) and the observed frequencies, for user-supplied attenuation, power, 
and number of dimensions. The overall process of the SCM can be summarized as fol-
lows (Figure 1 further illustrates the SCM procedure): 

1. Select a set of power and attenuation settings and a number of dimensions for the 
SCM procedure. Typical selections are a = {0.7,1,2,3} and M = {0.7, 1, 2, 3}, and 
two dimensions for the inferred points of the agents. 

2. For each combination of the parameters of a and M, do the following: 
a. Place each data point in the specified number of dimensions, dimensional space, 

and calculate the frequencies of this placement using equations aforementioned. 
b. Evaluate the current placement using the result of the last step and observed fre-

quencies using a χ^2-value. 
c. Continue to adjust the placements of the points to achieve a better χ^2-value. 

3. Return the coordinates of those placements of the points that have the best χ^2-value. 

 
Fig. 1. Flowchart of the SCM process. User inputs are the number of dimensions, 
power, and attenuation. Outputs are the latent points of the nodes and the distances 
between the nodes in the latent space. 



5 

Having obtained the latent positions of each node, we can then obtain a pairwise 
distance matrix. Using this pairwise distance matrix, we extract the latent graph by the 
Weighted Consensus Graph, which is derived from the Consensus Graph [7]. At a high 
level, the Consensus Graph takes multiple k-Nearest Neighbor (k-NN) graphs and cre-
ates a graph, C, that is a count of all of the times that two nodes are in the same k-NN 
of any other node. The Consensus Graph procedure has seen a wide variety of uses and 
remains one of the prominent procedures for extracting a latent network using arbitrary 
similarity measurements [7]. One drawback of the Consensus Graph is that each time 
two nodes occur in the same k-NN of a third node, they always just receive a `+1' to 
their counts. Thus, in the case of the third node acting as a boundary spanner between 
two clusters of nodes, those clusters of nodes will end up being erroneously densely 
connected by the Consensus Graph procedure. In order to remedy this, and to have a 
method that has even greater sensitivity to local structures in the latent graph, we pro-
pose a Weighted Consensus Graph. Figure 2 is a simple illustration that demonstrates 
how the Weighted Consensus Graph can provide a more cluster sensitive procedure 
than the Consensus Graph. In the 3-NN graph, nodes u and v would receive a plus 1 to 
their consensus graph count, as they both share node w as a 3-NN neighbor. However, 
in the weighted consensus graph approach the fact that nodes u and v only share w as a 
neighbor in the 3-NN is considered, and so they only receive a plus one-third into their 
consensus graph count. 

 

 
Fig. 2. Example 3-NN Weighted Consensus Graph. 

In the Weighted Consensus Graph procedure, each co-occurrence between two 
nodes in the k-NN of a third node now gets a score addition based on the local neigh-
borhoods of the two nodes at that particular k. In order to assess how much a score 
addition an edge between two nodes that share a neighbor in a k-NN gets, we turn to 
the Weighted Jaccard Index, which is formulated as: 
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  (3) 

where u and v are two nodes in the latent graph, and N(u) and N(v) are their respective 
neighborhoods such that an entry in N(u) is the weight of the link from node u to all of 
the nodes to which it connects. The min and max operations are pairwise operations on 
the vectors of the neighborhoods of the two nodes. The use of a Jaccard index has 
demonstrated great utility in the network sampling literature as a means of assessing 
local community structure and as a basis for sampling to preserve the network struc-
ture [8], [9]. Thus, our proposed algorithm works analogously to the original Consensus 
Graph method, with the exception that each co-occurrence of two nodes in a k-NN of a 
third node gets an addition of the Weighted Jaccard Index between those two nodes. 
Since the Weighted Jaccard Index can be interpreted as the probability of an edge ex-
isting, given its endpoints, we also introduce a parameter, ε, which is a hyperparamter 
that can exclude non-probable edges from being included in the final graph. In this way, 
out method does not rely on any global thresholding after the graph’s construction to 
remove erroneous edges, which is common with many graph learning techniques to 
include the consensus graph. Instead we dynamically remove erroneous edges as they 
are identified as being erroneous by a low probability of occurrence. The pseudo-code 
of our Weighted Consensus Graph procedure is detailed Algorithm 1, shown in Figure 
3. 

 

 
Fig. 3. Algorithm 1: Weighted Consensus Graph. 

In Algorithm 1, the final assignment to C is to row-normalize C.  At the end of the 
Weighted Consensus Graph, we are left with a weighted, symmetric graph that repre-
sents the manifold of the data. From there, we employ the simple, yet effective, network 
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clustering technique of the Louvain Method [10]. It should be noted that any network 
clustering algorithm could be applied to the latent network, and that we choose to use 
Blondel et al.'s method do its ubiquity in various coding languages and proven perfor-
mance.  

For the malware, we choose to threshold on a per-edge basis, with a value of 0.3. 
This is to say, we only added C to the edge score if the edge score was greater than 0.3; 
an edge must have a probability of occurring, given its endpoints, greater than 0.3. We 
also selected the k-value as: 

  (4) 

where N is the number of malware samples.  

4 SCM Results 

Generally, the latent network of the malware samples displayed distinct, heterogenous 
sub-communities. First, the samples have a strong community structure, with many 
more inter-community than intra-community edges. Second, the malware samples have 
overlapping subgroups. Third, there is one possible outlier subgroup and only two mal-
ware samples that do not lie strongly within any group. Figure 4 is the latent network 
of the malware (coloring by Louvain Modularity subgrouping). 

 
Fig. 4. Louvain Modularity of the latent network of malware. 

Those nodes that are weak members of any group, 74 and 175, were also the highest 
in centrality betweenness. It is likely these were anomalous samples with respect to the 
other malware samples; they likely shared not only feature closeness to their assigned 
subgroup (dark blue), but also feature closeness to other subgroups.  Of the 5 subgroups 
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found by Louvain, the most central node of the green was 181, of the light blue was 
214, of the dark blue was 17, of the yellow was 249, and of the red was 125. These 
were likely prototypical nodes for each of their respective subgroups. It is interesting 
to note that 17, while the most central node of the dark blue subgroups, was also highly 
connected to the green subgroup. It is likely that if the network were further sparsified, 
17 would end up in the green subgroup and there would be a small, disconnected outlier 
cluster made up of remnants of the dark blue subgroup.  

As for the relationships between those subgroups found in the latent graph, there 
were two strongly modular subgroups, and three overlapping subgroups. The green and 
dark blue subgroups had 95.7% and 76.5% percent of their edges internal, respectively. 
So, while the subgrouping was done by Louvain, it was likely these subgroups would 
remain unchanged under any other subgrouping method.  In contrast, the light blue, 
yellow, and red subgroups had 63.9%, 25.4%, and 40.7% of their edges internal, re-
spectively. Thus, these subgroups were not as well defined as the other two and likely 
had a fair amount of overlap in the features between their respective constituents. Ad-
ditionally, the yellow subgroup had ties between the light blue and the red subgroups, 
but the red and yellow subgroups had almost no ties between them. This in-between 
subgroup was likely a result of those samples belonging to either the light blue or red 
subgroups, but having some attributes from the other subgroup. This idea is further 
supported by the very few internal links for the yellow subgroup. Thus, the data in those 
three subgroups likely have some overlap in some feature space, and those samples 
which most overlap in the feature space were members of the yellow subgroup. 

In order to gain better insight into the learned latent network, we then compared the 
network produced by SCM and Weighted Consensus Graph to the data found by a com-
monly used similarity analysis tool for malware analysis, ssdeep [3]. In order to create 
the latent network and find subgroups from the ssdeep similarity score values, we cre-
ated a pairwise network of all the samples, where each edge was weighted by the ssdeep 
score comparing the two sample hashes. Figure 5 depicts the network created by the 
ssdeep scores. 

Much like the network found by SCM and the Weighted Consensus Graph, there 
were some strongly clustered subgroups within the data, as well as an overlapping sub-
group (colors red and light blue). In order to compare the subgroups found within the 
two networks, we evaluated both networks using the Louvain method where the nodes 
were entered into the algorithm in a non-random order. The subgroups had a reasonably 
high degree of overlap, with an Adjusted Mutual Information value of 0.7103. In par-
ticular, the green subgroup from the SCM and Weighted Consensus Graph and the 
brown subgroup from the ssdeep network very closely overlapped. One subgroup of 
major difference between the two methods, however, was the dark blue subgroup of the 
SCM and Weighted Consensus Graph, which was a cohesive subgroup in the latter 
network, but whose members were mostly a collection of isolates and very small com-
ponents in the ssdeep network. Furthermore, the SCM and Weighted Consensus Graph 
and ssdeep networks themselves bear little relation. Using the Quadratic Assignment 
Procedure, we found the two networks had a correlation value of only 0.317 and weak 
ability to regress on each other with an R2 = 0.10. Thus, while the two networks did 
produce very similar subgrouping results, they also had different topologies, with the 
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SCM and Weighted Consensus Graph having greater connectivity and heterogeneity in 
degree distribution. 

 

 
Fig. 5. Network structure created using ssdeep similarity scores. 

Turning to look at the relationship among features, there was not as strong of a clus-
tered network structure present in the latent graph. When SCM was applied to each of 
the malware features, wherein each of the malware samples now becomes the feature 
of evaluation, the SCM plus Weighted Consensus Graph procedure was not able to find 
easily distinguishable clusters or a distinct network topology beyond a uniformly, 
densely-connected network. This was likely a result of the features having similar man-
ifestations across the malware samples. It is interesting to note, however, that if you 
cluster the latent network of the features, in the same way as was done with the samples, 
you produce 9 distinct subgroups. This is more than the default sets of features, which 
was 4 (256 features from each of 4 categories of: Byte-Entropy Histogram, PE Import, 
String 2D histogram, and PE Metadata). Furthermore, the found Louvain subgroups did 
not align with or within the default features and have a low Adjusted Mutual Infor-
mation Score between them at 0.0375. Thus, it would seem that different parts of the 
malware feature sets were activated by different malware samples. So, while it was 
difficult to extract meaningful networks from the features by SCM and Weighted Con-
sensus Graph, it did illustrate that the features do manifest differently for different mal-
ware samples. 

5 Conclusions and Future Work 

This initial exploration demonstrates the application of a social network analysis tech-
nique, Socio-cultural Cognitive Mapping, to analysis of a malware family (Sakula). 
Future work includes further analysis of the results to determine the underlying features 
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that drive clustering using the Socio-cultural Cognitive Mapping and Weighted Con-
sensus Graph network structure. We also plan to compare the results to other similarity 
analysis tools used for malware analysis beyond ssdeep. We will investigate the appli-
cation and analysis of additional malware families to explore whether these results gen-
eralize in additional future work. 
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