As highly-motivated information actors have become increasingly creative and coordinated across multiple media platforms, those who are slow to react may get swept up by a wave of malicious efforts aimed to undermine and take over the information environment. Our study focuses on YouTube, a medium used by information actors prior to and throughout NATO’s exercise Trident Juncture. Content was added to the information environment at such a high speed to not only reach audiences, but to engage them. Adversaries were taking full advantage of the opportunity to insert discord or weaponize narratives and manipulate or change the information received.

Information Environment Assessment Methodology

Longitudinal design over a seven-month period:

- MAY/JUN 2018
- JUL/SEP 2018
- OCT/NOV 2018

Main data collection time period: 1324 videos

- 7% (96 videos): NATO-owned
- 29% (390 videos): Hostile
- 63% (838 videos): Earned (news outlets and other non-hostile parties)

Information Actors’ Tactics

Information Spreaders:
Targeted Messaging presented as news to divide and spread paranoia

Exaggeration and Hyperbole:
Attention-grabbing headlines, detailed descriptions. Some actors use them to control narratives, others for monetarization.

Analysis

The Revelation:
A multi-method analysis (qualitative & quantitative) approach was taken revealing …

Interactive coordination among commenters identified. Multiple lines of effort to:

- flood mediums with content
- interact via cross-media domains
- conduct permeation R&S

Future Research

Co-Commenter Network
Main actors commenters are tightly connected. Bots or may be commenter ‘flash’ mobs, but definitely inorganic behavior.

Word Cloud of key commenter

ACKNOWLEDGEMENTS

This research is funded in part by the U.S. National Science Foundation (IIS-1638933, ACI-1429160, and IIS-1110868), U.S. Office of Naval Research (N00014-10-1-0911, N00014-14-1-0489, N00014-15-F-1187, N00014-16-1-2016, N00014-16-1-2412, N00014-17-1-2500, N00014-17-1-2675, N00014-18-1-2336), U.S. Air Force Research Lab, U.S. Army Research Office (W911NF-16-1-0189), U.S. Defense Advanced Research Projects Agency (W31P4Q-17-C-0059), Arkansas Research Alliance, and the Jerry L. Maulden/Entergy Endowment at the University of Arkansas at Little Rock.

Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the funding organizations. To share feedback or learn more, contact Dr. Nitin Agarwal (nxagarwal@ualr.edu).