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Abstract. ​As part of ongoing post-market surveillance, the US Food and Drug            
Administration (FDA) accepts medical device reports (MDRs) describing        
possible device malfunctions. FDA analysts examine these reports individually,         
assessing whether a widespread device malfunction may be endangering public          
health. This work offers a classifier that identifies reports likely to involve a             
person being burned. The classifier uses a set of n-grams, taken from a large              
body of medical device report texts, as features; the problem’s dimensionality is            
reduced using a principal component analysis. Three classifiers were then          
validated using a smaller body of reports annotated by a set of FDA analysts,              
and the best classifier was selected from the group. The results indicate that a              
simple support vector classifier with features based on raw n-gram frequencies           
is able to identify these serious burn cases with 96% recall.  
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1 Introduction 

The FDA receives hundreds of thousands of medical device reports every year            
describing device malfunctions or failures [1]. These reports may be filed by patients,             
healthcare professionals, or device manufacturers, among others. To aid postmarket          
surveillance, FDA analysts are tasked with determining if these MDRs indicate a            
widespread device malfunction or failure endangering public health. Analyst         
responses often differ given the same MDRs, creating uncertainty in how to proceed.             
This uncertainty may have disastrous consequences, allowing dangerous devices to          
remain on the market or leading to life-saving devices being suspended for unrelated             
issues. 

Machine learning classifiers have had many applications in medical         
decision-making [citation needed] and diagnosis [citation needed]. Here, they may be           
used to augment the MDR analysis process by flagging reports most likely to contain              
patient injuries. This work focuses on building a classifier capable of identifying            
whether a report conveys that a person has suffered a serious burn.  
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2 Description of Data 

There are two important sets of data used in this work: the first is a large “complete”                 
corpus of medical device reports filed with the FDA. There are over sixty-four             
thousand reports in this corpus, each containing the string “burn.” The second is a              
smaller corpus of medical device reports, taken from the complete corpus and            
annotated in surveys in previous work. In those surveys, the text bodies of these 499               
reports were individually assessed by five FDA analysts. Each analyst was asked to             
assess whether the report in question described a person suffering a serious burn             
injury, where “serious” was defined as life-threatening or permanent. They were           
given the options “Yes,” “No,” and “Not Enough Information” (“NEI”). These           
options are the classes that this paper will use, and the five votes will be used to                 
determine a proxy “ground truth” when time to validate a model.  

Of the annotated reports, the majority were categorized as “Yes” (49.7%) or “No”             
(45.9%), with few “NEI” assessments (4.4%). As there were more than two raters,             
inter-rater reliability was assessed using Fleiss’ kappa [2]. This measure was found to             
be к = 0.65, demonstrating “substantial agreement” [3].  

Before beginning any analysis, a new “large” corpus was created by removing all             
reports in the smaller corpus from the complete corpus, still leaving approximately            
sixty-four thousand reports.  

Each corpus was tokenized and cleaned before analysis, first removing stopwords           
and words of fewer than three characters, then lemmatizing and stemming each token.  

3 Methods 

3.1 Feature Extraction 

Just as the analysts assessed the reports based on their text alone, so does each               
classifier. Because computers are as yet incapable of understanding and processing           
text in the same way that humans do, approximations must be made. This project uses               
the presence of sequences of words of length n, known as n-grams [4], [5], to               
characterize text. In Fig. 1. below, the sentence “The classifier was helpful” is split              
into unigrams (n = 1), bigrams (n = 2), and trigrams (n = 3).  
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Fig. 1.​ Sentence split into unigrams, bigrams, and trigrams 

 
When using n-grams as features, word sequences of length 2 or 3 have been shown to                
be the most effective [4]. To get the most out of this approach, this work uses word                 
sequences of length 2 (bigrams) and 3 (trigrams), a decision modeled after others in              
the literature [5].  

Classifier features were generated from the most common bigrams (occurred at           
least 500 times) and trigrams (occurred at least 300 times) in the large corpus. This               
produced 1,505 features of interest.  

3.2 Feature Selection 
With 1,505 features and 499 reports, a simple regression would be unwieldy and             
plagued by the curse of dimensionality; the features must be pared down to a subset               
that still adequately represent the data. The most popular way to reduce the             
dimensions of a dataset is likely principal component analysis [6]. A term-document            
matrix was created for the corpus, with each term being an n-gram feature and each               
document a device report, and a principal component analysis was performed on the             
normalized data. The resulting scree plot is shown in Fig. 2 below, zoomed to the               
first 25 components for clarity.  
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Fig. 2. ​Scree plot above, zoomed to between 0 and 25 principal components, offering a better                
view of the milestones  

 
While 90% of the variance is explained in the first 157 (~10% of total) principal               
components, 80% of the variance is explained in the first 91 (~6%) components. In an               
effort to be as conservative as possible with computational power, the first 91             
components will form the feature set of the classifiers built below. This follows the              
rule of thumb that one should have at least five samples per feature [7], with a ~5.5:1                 
ratio of features to samples here.  

3.3 Classifier Fitting 
As this is a supervised classifier, a “true” label, or ground truth, needed to be               
established for each report.  

Each report was assessed five times; the ground truth label was approximated using             
the majority vote. As stated above, the analysts’ inter-rater reliability was found to be              
к = 0.65 using Fleiss’ kappa. In the case of a tie, the more severe label was favored:                  
“Yes” is the most severe, followed by “NEI,” with “No” being the least severe and               
therefore never chosen in the case of a tie. Table 1 shows each tie case and its result.  

Table 1.​ Tie cases. 

Label 1 Label 2 Resulting Label 
NEI Yes Yes 
NEI No NEI 
No Yes Yes 
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Each report receives its one label, following the tie severity table if necessary. With              
true labels for the data, the classifier construction can begin. This is a multinomial              
classification problem, as each document must be assigned one of three labels.  

Three types of classifiers were built: a logistic regression, a Naïve Bayes classifier,             
and a support vector machine (SVM). Each classifier was tuned for “Yes” recall; as              
the goal of the work is to identify reports in which a person has been burned, it                 
seemed most valuable to correctly identify as many of those as possible, forgiving to              
some extent lower precision.  

Logistic Regression. ​The first classifier constructed is a multinomial logistic          
regression. This regression uses a one-vs-rest strategy, fitting a binary classifier to            
each label.   

Naïve Bayes Classifier. ​The second classifier used is a multivariate Bernoulli Naïve            
Bayes classifier. Some Naïve Bayes classifiers represent a document by the set of             
word occurrences within that document, including the counts of those occurrences,           
while others represent a document by a vector of binary variables indicating whether a              
word occurs in the document, regardless of count [8]. This classifier is a twist on the                
latter, using the n-gram features rather than single words. The probability of a label is               
determined not only by the presence of certain words, but by the absence of others. 

Support Vector Machine. ​The third classifier is a multiclass support vector machine,            
using C-support vector classification. This classifier uses the radial basis function           
kernel.  

4 Results 

4.1 Logistic Regression Results 

The first classifier tested is the multinomial logistic regression; its classification report            
is shown in Table 2 below; it has an impressive “Yes” recall and the highest average                
accuracy, 0.7275, over 10-fold cross-validation.  

Table 2.​ Classification Report, Logistic Regression 

Label  Precision Recall F1-Score 
NEI 1.00 0.55 0.71 
No 0.92 0.88 0.90 
Yes 0.88 0.96 0.92 
Weighted Average 0.91 0.90 0.90 
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4.2 Naïve Bayes Classifier Results 

The Bernoulli Naïve Bayes classifier came next; its classification report is in Table 3.              
With an average accuracy of 0.6299 in 10-fold cross-validation and lower precision            
and recall across the entire board, this classifier underperformed severely compared to            
the others. This may be due to poor hyperparameter selection for the task. 

Table 3.​ Classification Report, Naïve Bayes 

Label  Precision Recall F1-Score 
NEI 0.19 0.36 0.25 
No 0.75 0.70 0.72 
Yes 0.75 0.73 0.74 
Weighted Average 0.72 0.70 0.71 

 

4.3 Support Vector Machine Results 

The third classifier looked at is the RBF-kernel support vector machine, which had an              
average accuracy of 0.6789. It also matched the logistic regression in terms of “Yes”              
recall.  

Table 4.​ Classification Report, Support Vector Machine 

Label  Precision Recall F1-Score 
NEI 1.00 0.50 0.67 
No 0.93 0.88 0.91 
Yes 0.87 0.96 0.91 
Weighted Average 0.91 0.90 0.90 

 

4.4 Overall Results  

 
When comparing average cross-validation accuracies, in Fig. 3 below, again the           
Naive Bayes classifier can be set aside. Here, the logistic regression outshines the             
SVM, with a 15.5% relatively higher average accuracy. However, given that this            
accompanies a 27.9% increase in run time, the results favor the SVM. Choosing to              
trade accuracy for speed allows for easier scaling to larger datasets in the future. 
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Fig. 3​. Average accuracy vs. average “Yes” recall 

5 Conclusions 

5.1 Conclusions 

With 96% recall for serious burns and a 68% accuracy overall, the SVM shown here               
is quite capable of identifying reports containing serious burns reliably. Most           
incorrect classifications tend towards more severe answers (e.g., classifying as "Yes"           
when the ground truth is "No"), which in practice is more appropriate than tending              
towards underrating the severity of a report. With this work, the foundation is laid for               
a tool that can aid analysts in identifying reports containing burn injuries. Future work              
should move past the pilot stage and scale the classifier to a larger set of burn reports.  

It should be pointed out that this type of classifier may not generalize to all reports                
if the language surrounding other injuries is too dissimilar in structure. A “Yes” report              
in this dataset is likely to have the phrase “degree burn”, for example; other injury               
reports may not have such clear signals. Future work should explore this method with              
different types of MDRs. 

Additionally, the analyst assessments of the reports in the original survey dataset            
were based only on the text of the report. There may be other aspects of a report that                  
influence their assessments in reality, making this a less than representative classifier.            
Future work should endeavor to identify these other aspects and meaningfully           
quantify them if possible.  
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