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Abstract. Visual salience is the visual percept from an image or scene that at-
tracts a person's attention and models of visual salience are often used to study 
visual search.  Visual salience is often used to model human gaze patterns, but it 
can also be utilized to prioritize the processing of a scene by autonomous systems 
in a way that is consistent with human behavior.  However, current models of 
visual search behavior are based on laboratory tests where luminance contrast 
ratios don’t exceed 1000:1 (‘low dynamic range’, LDR), but visual search in the 
real world occurs under luminance contrast ratios of up to 1,000,000:1.  In this 
paper we present a high dynamic range adapted model of our ideal observer 
model of visual salience as a way of overcoming the dynamic range limitations 
of other low dynamic range models of visual salience. 
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1 Introduction 

At a given moment in time the maximum relative difference in luminance that a person 
can perceive, a person’s in-scene dynamic range, is on the order of 105:1.  Human vision 
has such a high dynamic range because the outside world is a high dynamic range 
(HDR) one, where changes in luminance (contrast) are often greater than 103:1.  How-
ever, computer vision algorithms continue to be designed and evaluated assuming the 
dynamic range of the environment is low, where the maximum dynamic range, in lu-
minance, of the environment is assumed to be 103:1 or less. Thus, computer vision al-
gorithms are almost exclusively tested on imagery that only uses 8-bits/color chan-
nel/pixel.  This bit-depth is appropriate for indoor environments and even many outdoor 
environments when there is no large change in luminance (no deep shadows or regions 
of bright glare).  But as autonomous military systems operate more and more outside 
of controlled laboratory settings and in more real-world environments with higher dy-
namic ranges this discrepancy in representation is likely to have a negative impact on 
their reliability and mission performance.  Some recent papers have looked into the 
performance of basic elements of computer vision algorithms (Canny edge detectors, 
blob detectors, SIFT/SURF feature detectors) and many have often found a consistent 
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degradation in the performance of these algorithms on HDR imagery if no form of 
adaption is used [1–4]. 

Within the space of computer vision algorithms, models of visual salience are some-
what unique in how closely tied they are to human perception.  Visual salience is an 
aspect of perception that makes some objects or locations within a scene stand out or 
demand more attentional resources compared to others [5, 6].  In the human visual sys-
tem, it is used to prioritize the limited gaze and attentional resources that a person can 
use to perceive their environment.  For autonomous systems, computational models of 
visual salience can be used as a way to implement human consistent methods of visual 
search by predicting how likely it is that each location within an image will attract a 
person’s gaze.  This also allows autonomous agents to prioritize visual information in 
a way that is understandable by humans, which may improve feelings of trust in the 
systems and overall teamwork.   

However, high dynamic range stimuli can negatively affect the performance of vis-
ual saliency models for two major reasons.  Like most computer vision algorithms, 
models of visual salience have been developed and evaluated on LDR, 24-bit color, 
stimuli, but these models have only recently been evaluated on high dynamic range 
stimuli to see how well they can maintain predictive accuracy [7].  The other issue that 
computational models of visual salience face that is somewhat unique within computer 
vision is that these models are founded on studies of human perception, but these stud-
ies were conducted on display systems that could only support a limited range of lumi-
nance levels.  As such, theories of visual perception and attention have been based on 
behaviors on LDR stimuli and were just assumed to continue to operate in HDR envi-
ronments.  Only in the last few years have displays or projectors become commercially 
available with dynamic ranges high enough to show uncompressed HDR imagery to 
test those assumptions. And recent studies using these HDR capable displays or projec-
tors have begun to overturn some of the assumptions founded on LDR systems, though 
the exact extent of the implications of these findings still needs to be fully explored.  

There have been several approaches employed by other research to adapt existing 
computer vision algorithms to handle HDR image data by manipulating the imagery to 
appear more similar to an LDR image [8, 9].  Other approaches that have been taken 
primarily in the visual salience research area try to implement adaptation methods 
found within the HVS and have incorporated those into a visual saliency model with 
moderate results [10, 11].  In this paper, we present our approach to modeling visual 
salience in a way that can adapt to images with any range of luminance levels by taking 
inspiration from work done in the area of tone mapping.   

2 Ideal Observer Model: High Dynamic Range 

2.1 Adaptation to HDR environments 

Within computer graphics and models of human vision, the brightness of an object is 
typically modeled as the combination of the reflectance of light off of that object and 
the illumination level in that location from a set of light sources.  And it is the variation 
in illumination within a scene that largely determines the dynamic range of that scene, 
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while most of the information used by models of vision are based on an object’s reflec-
tance information.  Some tone mapping methods use this fact to separate an image into 
an illumination layer and a reflectance layer so that the illumination layer can be com-
pressed without affecting the reflectance layer.  Tone mapping methods are HDR com-
pression algorithms that aim to compress the dynamic range of an HDR image so that 
it can be displayed on an LDR display (i.e. an HDR image is compressed to be an LDR 
24-bit color image), while trying to preserve some aspect of the original HDR image.  
In order to make our visual saliency model adaptable to images with larger dynamic 
ranges, we use this light model layer separation approach in the form of applying a 
bilateral filter to the input image to try and separate the reflectance and illumination 
layers.  The fundamental equation of the bilateral filter is that of an edge preserving 
filter used to estimate the illumination layer of an image as shown in eqn. (1).  It allows 
the creation of a low pass version of the image without blurring the lines of object 
boundaries.  The filter works by computing a weighted average of a group of pixels Ω 
surrounding pixel s, where the weighted contribution of each pixel pϵΩ is proportional 
to the distance of between pixel p and s as well as the difference in value (Ip – Is).  Thus, 
pixels that are further away from pixel s or have a large difference in luminance value 
contribute a small weight to the weighted average.  To keep the computational speed 
acceptable, we use the implementation of the bilateral filter by Ghosh and Chaudhury 
that has an O(1) computational cost [12, 13].   
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2.2 Updated ioM 

The ideal observer model (ioM) as it was originally proposed in [14] applied a multi-
resolution spatially-oriented wavelet decomposition to each feature channel of an im-
age (color and intensity).  It then tried to calculate the entropy, H(X), of each region 
within each subband of the wavelet decomposition by modeling each coefficient as a 
Gaussian Scale Mixture.  However, this formulation was analytically unsolvable and 
so required several numerical approximations in order to implement it.  In this current 
formulation, rather than assuming the wavelet coefficients are part of a zero mean 
Gaussian Scale Mixture, we model them using a zero mean Generalized Gaussian Dis-
tribution eqn. (2), with shape and scale parameters (r, s), respectively.   
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The Generalized Gaussian Distribution (GGD) is a family of probability distribution 
functions that depending on the value of the shape parameter can model different prob-
ability distributions.  For r=1, (2) takes the form of the Laplacian distribution, while if 
r=2, (2) is a zero mean normal distribution with a variance given by s2.  Γ(⸳) from eqn 
(2) is the gamma function.  For natural images the distribution of wavelet coefficients 
is typically peaky and highly kurtotic, which can be modeled using a shape parameter 
with an r<1.  For this range of shape parameters, when the shape parameter needs to be 
estimated using a few samples, x, the negative entropy method (J) for estimating the 
shape parameter can produce accurate results [15, 16].  The equation for the negative 
entropy method is given in eqn. (3), but inverting it to solve for r is not easy and may 
not even be possible, but r can be found through the use of a look up table and subse-
quent interpolation to improve the precision depending on precision requirements.  
With r solved, the shape parameter s can be estimated using eqn. (4) [17].   
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Where k1 = 7.412 and k2 = 33.67 and r= Ψ-1(J) 
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=∑ x is the set of samples, n, used to estimate the GGD parameters.   

Incorporating the new underlying mathematical model for the ideal observer model 
and the bilateral filter to adapt to images with high luminance ranges, we show the 
diagram of the ioM-HDR in Figure 1.  The feature channel separation step of the ioM-
HDR model decomposes an HDR image into an illumination map, a reflectance map, 
and a normalized color map.  The illumination map is the output of the bilateral filter 
after it has been applied to the luminance version of the HDR image.  The color and 
reflectance maps are then created by normalizing the color and luminance maps of the 
HDR image by the illumination layer. During the wavelet decomposition and entropy 
calculation, each map goes through a multi-resolution wavelet decomposition using 
oriented spatial filters to create subband maps at each resolution level for each feature.  
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For each region within a subband map, the entropy of that region is estimated using the 
GGD to model the probability distribution of the samples in that region.  Once entropy 
maps for each subband are created, the maps are normalized, using the normalized 
method from the original Itti model [18],  to look for unique patterns within each en-
tropy map.  The normalized entropy maps are then averaged together across subbands 
within a feature channel and then across all feature channels.  The final averaged nor-
malized output is the resulting saliency map whose values serve as a likelihood estimate 
of how likely each location will attract a person’s gaze.   

 

 
Fig. 1.   Diagram of the High Dynamic Range extension of the Ideal Observer Model. 

 

3 Conclusions 

As autonomous military systems and platforms move from tools to teammates to fully 
autonomous platforms and systems they will have to become more adapted to operating 
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in new and dynamically changing environments in order to efficiently achieve mission 
objectives while also maintaining an awareness of their surrounding environment.  The 
ability of autonomous platforms to process HDR stimuli will not just support both of 
these tasks, but will be a fundamental requirement of these systems as every moment 
information within the environment remains undetected, and hence unprioritized, adds 
danger to the mission and risks mission success.  The model presented in this paper 
takes a step towards that aim, by designing a model of visual salience that is able to 
predict eye gaze while automatically adapting to the dynamic range of the input image.  
Further testing and development of the model will allow a more quantitative demon-
stration of the predictive performance of this model. 
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