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Abstract. Numerous studies have been devoted to modeling and esti-
mating shortest-paths in complex networks. To maintain generality, these
studies have neglected a common property of complex social networks;
small-world phenomenon (colloquially stated as six degrees of separa-
tion). Based on the intuition behind the flow of information in small-
worlds, we propose a small-world representation for social networks. In
this new representation, we study the influence of different network mea-
sures on the shortest-paths. We perform a comprehensive analysis on a
large set of local and global network measures and report our findings
for various social networks. The results of our analyses show that: (1)
shortest path lengths in small worlds are strongly correlated to the maxi-
mum degree centrality and the diameter. In fact, using these two features
one can predict the average path length more accurately than using any
other feature alone; (2) when nodes are ranked according to their aver-
age shortest-path lengths, we can approximate this ranking by a shifted
standard normal distribution with minimum information loss. The shift
can be estimated by the rank of the node with maximum local clustering
coefficient, which can be computed in linear or constant time [11].
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1 Introduction

Network connectivity and shortest paths have been widely used to study infor-
mation diffusion and rumor propagation [23]. Shortest paths provide the fastest
and, usually, the strongest interaction between actors (nodes) in a network [16].
Theoretical studies on shortest paths in social networks often neglect one of
the most well-known properties of these networks: small-world phenomenon
[13,15,20]. Small-world phenomenon, first popularized by Milgram in the 60’s
[19], indicates that individuals in a social network are connected via short paths
of friendships. Later studies found a similar pattern in online social networks and
further extended the theory behind this phenomenon [12,17,21]. In this study, we
analyze the relationship between measures that define a network structure and
the small-world shortest paths. We introduce the small-world representation of a
social network and discuss how it can realistically model the flow of information.
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Using the small-world representation of 10 real-world social networks, we inves-
tigate the relationship between a large set of local and global network properties
and the shortest paths. In this process, we make the following contributions:

• Small-World Representation. We offer a simplified representation for
social networks which models a realistic flow of information (Section 2);

• Average Shortest-Path Length Analysis. We consider local and global
network measures and show the correlation and importance of each measure
with regards to the average shortest path lengths. Using this information,
we build a linear model to predict the average shortest path lengths and
present the challenges (Section 3.1); and

• Shortest-Path Distribution and Local Information. Finally, we focus
on local information with low-cost computation (Section 3.2). If nodes in
the graph are ranked based on their average shortest-path length, we show
that a shifted standard normal distribution is capable of approximating this
ranking with minimum information loss. The required shift is estimated by
the rank of the node with maximum local clustering coefficient.

2 Data Description

The focus of this study is to investigate the real-world networks of individu-
als, be it online or physical. The ideal dataset for this study is a real-world
network with (1) nodes representing human users, clients or members and (2)
edges representing relationships between those nodes that are (3) large enough
to provide statistically significant observations. The fundamental concept behind
small-world is reachability of the users. Hence, a relationship between users that
do not enable them to contact or reach each other is not of interest. For example,
the connections between individuals who are recipients of the same email do not
imply that these users can necessarily reach each other. Reachability through
edges in a network can be inferred via the network’s small-world representation.

Definition 1. (Small-world representation). The small-world representation of
network G = (V, E) is the undirected network G′ = (V, E′) such that for all
(vi, vj) ∈ E, there exists exactly one edge (vi, vj) ∈ E′ that represents the flow
of information from vi to vj and vice versa.

The intuition behind this definition can be better understood from Milgram’s
broker experiment [19]. In his experiment, Milgram chose a set of individuals at
random and asked each of them to send a letter to a specific broker through
their connections. Each individual had to choose a person among their acquain-
tances to pass the letter on. Intuitively, the chosen candidate should have the
highest possibility to reach the broker through his/her connections. The flow of
information from A to B (i.e. passing the letter from A to B) was entirely depen-
dent on the ‘acquaintanceship’ of A and B. A way to extend this experiment to
virtual societies (e.g. social media platforms) is through asking someone to pass
a message, rumor, or news to a target individual using only their acquaintances.
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Dataset Edge Type |V| |E| Avg. Deg. Max Deg. Clustering Coeff. (%) Diameter ASP
zachary tie 34 78 4.59 17 57.06 5 2.41
train_bombing contact 64 243 7.59 29 62.23 6 2.69
residence_hall friendship 217 1,839 16.95 56 36.28 4 2.39
haggle contact 274 2,124 15.5 101 63.27 4 2.42
infectious contact 410 2,765 13.49 50 45.58 9 3.63
hamster friendship 2,000 16,098 16.1 273 54.01 10 3.59
adolescent_health friendship 2,539 10,455 8.24 27 14.67 10 4.56
ego_facebook friendship 2,888 2,981 2.06 769 2.72 9 3.87
advogato trust 5,042 39,227 15.56 803 25.27 9 3.27
pretty_good_privacy interaction 10,680 24,316 4.55 205 26.59 24 7.49

Table 1: The network characteristics of 10 real-world datasets. This information
belongs to the small-world representation of each network. Abbreviations: Avg.:
average, Deg.: degree, Coeff.: coefficient, ASP: average shortest path.

The acquaintanceship in online networks cannot be defined as straightforward as
in physical societies. For example, in an online network like Twitter, one might
claim that the Following relationship makes a one-sided flow of information from
the followee to the follower but not vice versa. We argue that, in terms of the
information flow in Milgram’s small-world experiment, the flow of information
can go from the follower to followee as well. Consider A, the subject of our exper-
iment, to follow B and B to follow C. If A is asked to pass a message to C through
his/her acquaintances, B will be the optimal receiving end of the message despite
the fact that B does not follow A. In general, in networks like Twitter, posting
content to be seen by one’s followers is not the only way of transferring informa-
tion. Another way is to receive content from the people whom one is followed by
in different ways such as tagging a person. As a result, we find the small-world
representation of a directed social network, such as Twitter, a more reasonable
graph model to study paths that deal with information flow. The small-world
representation of our example, Twitter network, is its undirected counterpart.
Following this strategy, we have selected ten real-world networks with a type
of connection among individuals that has a small-world representation. In the
following, we introduce each network’s type of connection and how they can be
modeled as small-world graphs.

1. Zachary’s Karate Club [22]: an undirected network of ties among mem-
bers of a Karate club after the club splits into two groups.

2. Train Bombing [9]: an undirected network of contacts among the sus-
pected terrorists in Madrid’s train bombing incident in 2004. The original
network contains edge weights to show the strength of the connections. How-
ever, these weights do not change the reachability of the nodes; i.e. an edge
between terrorists i and j implies that i can contact j and vice versa re-
gardless of the strength of their relationship (there are no edges with weight
zero). So, the small-world representation of the network is the unweighted
counterpart of this graph.

3. Residence Hall [8]: a directed network of friendships among residents of
a residence hall on Australian National University campus. A directed edge
from i to j shows that i considers j to be a friend. This also implies that
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i and j know each other whether j considers i as a friend or not. So, the
small-world representation will be the undirected counterpart of this graph.

4. Haggle [4]: an undirected network of contacts between individuals, obtained
through carried wireless devices.

5. Infectious [6]: a multi-edge undirected network of face-to-face contacts
among exhibition visitors at Dublin’s Science Gallery in 2009. The contacts
have been active for at least 20 seconds and multiple contacts could have
occurred between two individuals. The small-world representation of this
network is the single-edge undirected counterpart.

6. Hamster [5]: an undirected network of friendships between users in Hamster
online social network.

7. Adolescent Health [1]: a weighted directed network of friendships among
students created from a survey in 1994/1995. Each student was asked for the
name of his/her top five friends and the edge weights show the frequency of
interaction between them. The small-world representation of this network is
the unweighted undirected counterpart (same as residence hall dataset).

8. Ego Facebook [3]: an undirected friendship network of Facebook users.
9. Advogato [2]: a directed network of trust among developers in Advogato

platform. The edges have positive weights (the amount of trust between two
users) and the nodes can contain self-loops (one can trust himself). The trust
between user i and j can imply the prior acquaintanceship between i and j
that makes the flow of information possible in both directions. Hence, the
small-world representation of this network is the undirected network with
no weights or self-loops.

10. Pretty Good Privacy [7]: the undirected interaction network between
users through Pretty Good Privacy (PGP) software.

In all networks, unless otherwise stated, the small-world representation is
the same as the original network. The detailed information of these small-world
representations can be found in Table 1.

3 Small-World and Network Structure

A network structure can be described through various measures, such as degree
distribution, average local clustering coefficient, number of triads, diameter and
centrality measures. We investigate a comprehensive set of network measures
and group them into three categories:

• General Network Measures. number of nodes and number of edges
• Local Network Measures. node degrees (degree distribution, average de-
gree, and maximum degree), clustering coefficient (local clustering coefficient
distribution and average clustering coefficient), node centrality (degree cen-
trality distribution, eigenvector centrality distribution, average degree cen-
trality, and average eigenvector centrality).

• Global Network Measures. diameter, communities (number of commu-
nities, community coverage, and community size), number of bridges, degree
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Fig. 1: Correlation between Network Measures and the Average Path Length.
From left to right: average shortest path length (ASP), number of nodes, number of edges, average
degree, maximum degree, clustering coefficient, diameter, number of communities, community cover-
age, average community size, assortativity coefficient, number of bridges, average degree centrality,
maximum degree centrality, average eigenvector centrality, maximum eigenvector centrality, average
cycle length, maximum cycle length, number of cycles, and number of triads.

assortativity coefficient, special subgraphs (number of triads, number of cy-
cles, the average cycle length, and maximum cycle length).

Local measures can be obtained for any subset of nodes in the graph while
global measures require all the nodes/edges in the graph.

Community Detection. Finding meaningful communities in a network re-
lies, mainly, on the type of network and the relationships presented in the graph
[18]. Intuitively, we expect the shortest paths in a graph to be heavily influenced
by the density of the connected components. Having components with higher
internal edge-density (intra edges) and comparatively less edge-density when
connecting to other components (inter edges) can trap the paths inside the com-
ponents. Following this intuition, among many existing community detection
algorithms, we choose modularity maximization that relies on the network topo-
logical structure rather than node/edge similarities. To speed up the process, we
choose Louvain algorithm [10], which optimizes modularity gain. We consider
the number and size of the communities, and the average community coverage
as network measures. The community coverage is defined as

C =
∑

i ei

2|E| , i = 1, ..., k (1)

where we have k communities and ei is the number of intra-community edges.

3.1 Average Shortest Path Length Analysis

We start our analysis by considering the network measures that have an impact
on the average shortest path length of the network.

Correlation. Figure 1 shows how different network measures correlate with
the average shortest path (ASP in the Figure) length of the network. A signifi-
cance test on these correlations reveals significant correlations (p-value less than
0.05) between average path length and the (1) diameter (0.98), (2) number of
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Fig. 2: Mean Absolute prediction Error (MAE) in absence of each feature. Higher
MAE indicates higher importance of the feature in predicting ASP. From left to
right: number of bridges, number of communities, maximum degree centrality,
and number of nodes.

communities (0.91), (3) number of bridges (0.85), (4) maximum degree central-
ity1 (−0.72), and (5) number of nodes (0.90). The strong correlation between
diameter and number of bridges, and average path length was to be expected; the
former is derived from shortest paths and the latter limits the flow of information
between connected components. Interestingly, the number of communities has
the strongest positive correlation with average path length after diameter while
the size and coverage of these communities seem to be completely uncorrelated.

Regression. To test the significance of these correlations, we fit a linear re-
gression model on the data and predict the average path length for each network
using cross-validation. Figure 2 shows the importance of each feature in training
the regression model based on the Mean Absolute Error (MAE) of the predictions
using the leave-one-out approach. The high MAE for the absence of diameter in-
dicates the importance of this feature, which was expected. However, our further
experiments with other subsets of these five features showed that the combina-
tion of diameter andmaximum degree centrality gives the lowest prediction error2
(0.27). Figure 3 depicts the actual and estimated average shortest path length of
the networks using the regression model built on diameter and maximum degree
centrality. The fitted model is 0.24 ·Diameter − 0.98 · dmax

|V |−1 + 1.69, where the
weights are rounded to the nearest second decimal.

In practice, global measures (e.g. diameter) are computationally expensive.
Previous studies, such as that conducted by Chechik et al. [14], offer relatively
time efficient algorithms to estimate the diameter. These algorithms, however,
take considerably more time than the computation of local measures (e.g. max-

1 Note the difference between the ASP correlation with maximum degree (dmax) and
maximum degree centrality. Maximum degree centrality is measured as dmax

|V |−1 and |V |
is different for each network. As each maximum degree is normalized by a different
value, the difference in correlation is to be expected.

2 The mean absolute error of predicting ASP using only maximum degree centrality
and diameter.
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Fig. 3: Estimated sverage Shortest path lengths vs. the actual average shortest
path lengths using linear regression on the diameter and maximum degree cen-
trality. The numbers on top of each pair of bars indicates the absolute error of
prediction.

imum degree centrality). In this respect, it is more practical to study the rela-
tionship between local network measures and average path lengths. Next section
will discuss this relationship in more depth.

3.2 Shortest-Path Distribution and Local Information

In this section, we focus on distributions of local information, i.e. degree distribu-
tion, degree centrality distribution, eigenvector centrality distribution, and local
clustering coefficient distribution. To infer a meaningful comparison between
these distributions and that of shortest paths, we consider the shortest-path dis-
tribution of each node. In this distribution, a Shortest-Path Number (SPN) is
assigned to each node which is defined in equation 3. The sum of SPN index for
all nodes in the graph is |V | times the average path length of the graph. For
each node i in graph G, the shortest-path number of i is defined as

SPN(i) =
∑

j 6=i dmin(i, j)
|V | − 1 (2)

We also used the SPN defined as the median of the shortest paths from
i which gave the same results as the average. The distribution of SPNs for all
nodes in the graph (SPN distribution) is of our interest. We use Kullback-Leibler
(KL) divergence to measure the difference between SPN distribution and that of
local distributions. We also test the SPN distribution against a modified version
of three standard distributions:
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Fig. 4: The Shortest-path distribution can be modeled by normal distribution.
We chose four datasets randomly for brevity but the same bell-shape has been
observed in all of our datasets.

1. Naïve Uniform: This distribution models the random guess for predicting
the SPN of a node. We use this model to test the significance of KL di-
vergence. Any KL divergence value above the corresponding value in naïve
uniform model is insignificant. In this model, it is assumed the SPN of each
node is drawn from a uniform distribution between the minimum and maxi-
mum possible SPN in a graph. Nodes with degree |V | − 1 give the minimum
possible SPN and maximum SPN occurs if the nodes form a chain such as
in a→ b→ c. In this case, the maximum SPN from equation 2 will be

SPNmax = 1 + 2 + ... + |V | − 1
|V | − 1 = |V |2 (3)

So, the naïve uniform will be defined as Unif(1, |V |2 ).
2. Small-World Uniform: This model is an improvement of random guess.

Naive uniform models the true random guess for the SPN of each node
with no prior knowledge about the network. However, from small-world phe-
nomenon, we know that the average shortest path from each node is most
probably a number less than 10. We use this prior knowledge to make more
educated guesses with uniform distribution. We estimate the SPNmax as

SPNmax ≈ SPN(nmcc) (4)

in which nmcc represents the node with the highest local clustering coefficient
(LCC) in the graph. This choice has been made due to (1) the fast calculation
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Dataset deg. dist. deg. cent. eig. cent. local clust. coeff. naïve uniform uniform normal
zachary 0.32 0.32 0.24 0.29 0.14 0.04 0.03
train_bombing 0.44 0.44 0.88 0.57 0.17 0.09 0.06
residence_hall 0.13 0.13 0.26 0.09 0.21 0.08 0.04
haggle 1.29 1.29 1.13 0.65 0.23 0.07 0.04
infectious 0.28 0.28 1.66 0.19 0.24 0.1 0.02
hamster 0.67 0.67 1.53 0.19 0.25 0.1 0.02
adolescent_health 0.19 0.19 1.43 0.35 0.24 0.11 0.01
ego_facebook 1.57 1.57 1.78 1.82 0.27 0.07 0.04
advogato 1.06 1.06 1.24 0.32 0.25 0.09 0.03
pretty_good_privacy 0.78 0.78 0.38 0.19 0.26 0.15 0.02

Table 2: KL divergence between SPN distribution and local information distri-
butions. Abbreviations from left to right: degree distribution, degree centrality,
eigenvector centrality,and local clustering coefficient.

of LCC, and (2) the relatively small KL divergence between LCC distribution
and SPN (see Table 2).

3. Estimated Normal: The intuition behind choosing this distribution is the
bell shape of the shortest-path length distribution appearing in all of our
datasets (Figure 4). We use a standard normal distribution which is shifted
by SPNmax as defined in 4.

The KL divergence between all distributions and SPN can be found in Ta-
ble 2. From the table, it is evident that standard normal distribution shifted by
the approximation in 4 models the SPN distribution with the least information
loss. This result confirms our previous intuition in Figure 4. In majority of our
datasets, local information perform worse than a random guess (naïve uniform).
Using small-world phenomenon for more educated random guesses improves the
similarity measure significantly. This can be considered as another proof of the
existence of small-world in all social networks used in this study.

4 Conclusion

In this paper, we studied the relationship between different network measures
in real-world social networks and their average path lengths. We found that a
regression model built on the combination of maximum degree centrality ( dmax

|V |−1 )
and network diameter can predict the average path length with high accuracy.
This shows the surprising importance of maximum degree centrality in predicting
the average shortest path length. Our experiments on local network measures
based on the defined ranking measure, SPN, shows that these measures do not
exhibit similar strong prediction abilities. However, a standard normal shifted by
the SPN of the node with the maximum local clustering coefficient can predict
the shortest-path distribution with the least information loss.
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