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Effects of Network Aggregation 
in Simple Diffusion Simulations

Dynamic Networks and Aggregation
We consider three types of networks which are typically used in practice:
1. Temporal Networks: All links have a start time and an end time. These networks are represented as 

network snapshots or series of static networks. Temporal networks fully capture the dynamics of the data.
2. Binarized Networks: A single static network. Links are binary and indicate if that connection took place 

anywhere in the timeline.
3. Thresholded Networks: A single static network. Links are first weighted by the number of occurrences in 

the timeline. Then, weights less than a threshold (the mean link weight for our study) are removed. Finally, 
all remaining link weights are set to one.

A simple example of these networks is shown in Figure 1.

Figure 1 is a very simple network, but aggregation already harms the data. In the binary network, diffusion can 
occur from the top right to the bottom left, then to the top left. However, this is not possible in the original 
temporal network due to the order of the edges. In the thresholded network, most of our data is lost in the 
thresholding procedure. We aim to understand how these effects playout on a large, real social media dataset.

Figure 1: Three types of networks analyzed in this study.

The College Message Dataset
In this study we analyze the College Messaging Dataset*. The dataset was constructed by collecting private 
messages sent on an online social media platform at the University of California, Irvine, The dataset consists of 
source nodes (message senders), target nodes (message receivers), and time-stamps.

*Panzarasa, P., Opsahl, T., Carley, K.M.: Patterns and dynamics of users’ behavior and interaction: Network 
analysis of an online community. Journal of the American Society for Information Science and Technology 60 
(5) , 911–932 (2009).

Feature Value

Nodes 1,899

Messages 59,835

Time-span 193 Days

Table 1: Basic statistics of the College Message Dataset

Abstract
Diffusion models are at the heart of many pressing issues such as disease, fake news, and computer viruses.  Epidemiologists and others have recognized the importance of link structure in static networks for diffusion simulations. At 
the same time, network scientists have recognized the importance of temporal structure in complex systems. In this work, we bring the two together to study the effect of condensing a temporal network into a static network in the 
context of diffusion. Using the College Message Dataset and a simple Susceptible-Infected simulation model, we study the differences in diffusion given three networks: the original temporal network, the static binarized network, and 
the static thresholded network. We find that the static networks exhibit significantly different diffusion properties to the original temporal network. In general, diffusion occurred more quickly and reached more of the nodes given 
the binarized network as opposed to the temporal network. The opposite was true for the tresholded network. Additionally, the choice of seed node lead to drastically different results in the temporal network, while there was no 
difference in the static networks. Lastly, we found that low transmissibility simulations on the temporal network further increased the disparity between seed nodes, showing promise as a method of finding temporally-central noes. 
These findings are in line with the theory of network cascades.

Results
Both static networks showed very different diffusion patterns to the original temporal network. Diffusion 
occurred faster on the binary network since all of the links were available to diffuse over at every time step. 
The thresholded network was hardest to diffuse on, since it had the fewest links. The seed node mattered most 
in the temporal network. All differences were magnified as p decreased. For every seed, both the type of 
network and the transmissibility was significant at the p <0.05 level. Interaction between the two variables 
was not found to be significant.

Variable Cases Implication

Network Type Temporal, Binary, Thresholded Diffusion environment

Infection Rate 1, 0.5, 0.1 Likelihood of spreading idea

Initial Seed 9, 323, 12, 103, 105, 1624 Who starts with the idea

Seed Time 0 When the seed gets the idea

Number of Seeds 1 How many seeds there are

Table 2: Experimental Design

Experimental Setup
Diffusion over the college message dataset was modeled with a simple Susceptible-Infected (SI) model. This 
model captures diffusion of knowledge, where students either have heard the fact (infected) or have not 
(susceptible). Infected nodes try to spread the knowledge through their links. They are successful with 
transmission probability p, the only parameter in the model. In the temporal network, simulation occurs on 
the real time line, since agents try to spread knowledge over messages in real time. In the static networks, 
simulation occurs on abstract time steps, since nodes can only reach their neighbors, the process is repeated 
iteratively to model the concept of time.

The model also requires a seed node and a seed time. This dictates who starts with the idea and when. In all of 
our experiments only a single student starts with the idea, and they have that idea at time t=0. The actual seed 
varies between the top-6 students in terms of messages sent. 

Table 2 summarizes the experimental setup. Each experiment was repeated 25 times, for a total of 918 total 
runs. In all cases, the outcome variable was the fraction of infected nodes over time. The time-series were 
compared qualitatively while the final fraction infected across experiments were compared quantitatively 
using a two-way ANOVA. 

Figure 2: Average results for all 3 networks for p=1 and p=0.1.

Conclusions
Using the College Message Dataset and a simple Susceptible-Infected simulation model, we see that static 
networks exhibit drastically different diffusion properties then the underlying temporal network. In general, 
diffusion occurred more quickly and reached more of the nodes in the binarized network than in the temporal 
network.

This highlights the importance of retaining temporal structure of network data when possible. We hope that 
this work will be used as a stepping stone for future work guiding practitioners for best practices in simulation 
in the absence of sufficient temporal granularity.


