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Abstract.  The Intelligence Preparation of the Battlespace (IPB) allows compa-
ny commanders to grasp key aspects of the environment they are operating in, 
as well as the elements and objectives of the adversary they are facing. This is 
accomplished through analysis of geospatial intelligence (GEOINT), open 
source data, and other intelligence streams to produce situation estimates, 
known adversary tactics, and enemy courses of action (COA).  The products 
developed during the IPB can also be used in combat simulations to improve ar-
tificial intelligence for automated planning and improved wargaming.  This pa-
per describes a process to represent IPB results as navigation mesh annotations 
and position evaluation functions.  These can then be used for scoring opposing 
force formations, based on objectives, tactics, and terrain data.  Since it is rea-
sonable to assume that an enemy force will position its units to have the greatest 
ability to accomplish its objectives, formations that maximize our scoring func-
tion act as an educated prediction of enemy unit positions.  These predictions 
can then support more robust automated planning and improved combat model-
ing.  We illustrate this method through the use of WOMBAT XXI, a research 
prototype combat model.   

Keywords: Military Planning, GEOINT, Tactical Movement, Combat Models. 

1 Introduction 

Modeling how human commanders predict opponent positions is a dif-
ficult task for constructive combat simulations.  Humans use their expe-
rience, understanding of the local terrain, environmental conditions, 
and enemy intelligence estimates to make informed decisions about 
where they believe their opponents are.  Simulation designers attempt-
ing to have AI-controlled bots make similar predictions will often use 
scripted behaviors or give bots extraneous data not available to human 
participants [1].  This could be considered “cheating,” and involves 
such things as perfect knowledge of enemy positions or predefined tac-
tical advantage points.  We propose a method to have bots use the same 



environmental data and intelligence products available to humans to 
make their predictions.  In the following sections, we will identify pre-
vious research into opponent position detection used to develop our 
predictor, outline the Intelligence Preparation of the Battlespace (IPB) 
and its products that we use for positional evaluation, demonstrate the 
use of our predictor in a research prototype combat model called 
WOMBAT XXI, and close with possible improvements and future 
work. 

2 Related Work 

There is a rich body of work regarding realistic opponent position 
tracking that we build our predictor from.  Tozour [2] and Isla [3] in-
troduce space-based methods for opponent tracking using occupancy 
maps.  These methods represent possible opponent positions as the 
probability that a node is occupied on a grid or navigation graph.  Prob-
ability is diffused between nodes over time and updated as nodes be-
come visible to tracking entities.   Alternatively, Bererton [4] proposed 
the use of particle filters to reflect possible positions as a finite set of 
weighted samples that move randomly in the search space (particles).  
Darken and Anderegg [5] further refined this method by using defined 
motion models called “simulacra” for their particles, producing predic-
tions that can reflect different behaviors expected in opponents.   
 Additionally, we looked at ways of bringing tactical combat 
experience into simulations.  Straatman et. al. [1] were able to produce 
dynamic tactical behavior in their bots through the use of waypoint an-
notations and position evaluation.  In their approach waypoints are an-
notated based on assigned goals and operating areas.  Additionally, dy-
namic information such as cover, lines-of-fire, and spacing related to 
other friendly entities are calculated for each waypoint.  Position evalu-
ation functions are then used to determine scoring for each waypoint 
and entities pick ones with the highest score.  We also looked at re-
search on fireteam movement conducted by Darken et al. [6] for use in 
our prediction models.  Hladky and Bulitko [7] also tested hidden semi-
Markov models and particle filter predictors in the first-person shooter, 
Counter-Strike: Source. 
 Our predictor builds on previous work through the use of navi-
gation meshes that are annotated based on known opponent tactics and 
intelligence. We use position evaluation as a scoring function for possi-



ble opponent positions.  Our predictor then searches for formations that 
maximize this scoring function. 

3 Problem Formation 

For this paper we will use the term “entity” to refer to a single simulat-
ed combat element.  Each entity is part of a unit.  Units are made of one 
or more entities and can also contain sub-units.  One entity in each unit 
can be designated as the unit leader.  The set containing the positions of 
each entity in a unit (including the unit’s sub-units) is the unit’s for-
mation. 

Our prediction problem can be broken up into two parts.  First, 
we need to create a navigation graph of the operational area and a scor-
ing function for each node on the graph.  The scoring function needs to 
reflect expected adversary tactics and objectives, as well as environ-
mental considerations.  Each entity’s position can be evaluated by the 
scoring function, and a unit’s formation score is the sum of all of its 
entity evaluations.  The second part of the prediction problem is identi-
fying entity positions that maximize their unit formation score.  While 
searching for this set of entity positions is not trivial, it can be accom-
plished in many ways.  Techniques such as hill climbing, simulated 
annealing, and genetic algorithms can be used to find high scoring for-
mations.   However, we are not guaranteed to find the absolute best set 
of positions.  At best, we can use these algorithms to determine sets of 
positions that are local maxima in the search space.   

In the next sections, we will identify the key products for our 
scoring function and present a combat simulation environment to test 
our predictor.   

 
3.1 Intelligence Preparation of the Battlespace  

Intelligence Preparation of the Battlespace (IPB) is “the systematic con-
tinuous process of analyzing the threat and environment in a specific 
geographic area” [8].    This evaluation includes analyzing available 
GEOINT and open source data, as well as studying threat patterns, doc-
trine and known standard operating procedures (SOP).  This analysis 
produces a graphic representation of enemy tactics called an Adversary 
Template [9].  Enemy Course of Actions (ECOA) are another integral 
product of the IPB, as they describe expected enemy actions and objec-



tives.  Multiple ECOAs are developed to reflect what the enemy may 
be doing at the start of the operation and during key events.  These IPB 
products are the main way real world intelligence and data are repre-
sented in our prediction model. The IPB provides us with the geograph-
ical data to build the navigation graph on the operational area.  We can 
use adversary templates as a means to evaluate unit geometry and anno-
tate graph nodes consistent with enemy objectives outlined in ECOAs. 

3.2 Wombat XXI 

WOMBAT XXI (WXXI) is a combat simulation built by LtCol Byron 
Harder, USMC [10] to support his development of an automated fire 
support planner.  Harder based WXXI on the Combined Arms Analysis 
Tool for the 21st Century (COMBATXXI) simulation used by the U.S. 
Army and Marine Corps.  WXXI is built on the Unity3D game engine.  
While we did not use the automated planner built by Harder, the unit 
templates, terrain-meshes, and visibility calculations in WXXI were 
vital to the development of our predictor. 

4 Building the Formation Scoring Function 

The first step in developing our predictor is to generate a model of the 
terrain of our operational area.  In WXXI, actual elevation data is con-
verted to a Unity terrain object.  The terrain object represents the real-
world data as a triangle-mesh.  This terrain object is then processed to 
create a navigation graph using the Astar Pathfinding Project [11].    
The navigation graph uses the triangles of the terrain object as its 
nodes.  For our testing we used a terrain object created by Harder based 
on a 2 km2 area from Cayucos Creek, CA.  For this terrain, there were 
8192 total nodes in the navigation graph [10]. 
 
4.1 Annotate Navigation Graph Nodes 

Once the Navigation Graph nodes have been created, they can be anno-
tated according to the outputs of the IPB.  Terrain types, weather ef-
fects, and visibility can be precalculated for each node to assist in later 
scoring evaluations.  Additionally, ECOAs can be represented by mark-
ing nodes that are operationally relevant.  These include nodes that 
must be patrolled, are tactical key points, or are part of a Field of Fire 



(FoF).  For our testing scenarios, we precalculated the visibility for 
each node to all other nodes.   

In our scenarios, we are also able to assign enemy units preferred 
targets and designate desired FoF.  The targeting assignments reflect 
the objectives of the ECOAs developed in the IPB.   These assignments 
only affect entities in the current unit, and entities in a unit’s sub-units 
can have different assignments.  Entities able to target the node that a 
preferred target is on, will have their position score increased.  Like-
wise, each node in a FoF that can be targeted by an entity will also in-
crease the entity’s position score.  We refer to the increase in position 
score for targeting a particular node as “targetability” for this paper.  
Targetability for a node is dependent on multiple factors in Wombat 
XXI.  However, for our testing, the closer an entity is to the desired 
targeted node, the greater the targetability.   

Entities will also try to avoid being targeted themselves.  If an en-
tity’s node can be targeted by the opposing force, their position score 
will be decreased by the opponent force’s targetability of that node. 
 
4.2 Determine Expected Enemy Formation Geometry 

Enemy entities will try to maintain a desired distance to their unit lead-
er as in Darken et. al. [6].  If the entity is outside of the acceptable 
range of the unit leader, the unit score will be decreased.  The further 
outside the range to the leader, the greater the penalty to the unit for-
mation score.  Entities will also try to maintain enough dispersion from 
other entities to avoid simultaneous attacks.  For each entity that is less 
than a set minimum distance away from another entity, the unit score is 
decreased.  The penalty is increased the closer units are together.  Final-
ly, entities will seek to maintain unit cohesion to provide mutual sup-
port to other unit members.  For each entity outside of a set range to 
another unit member, unit score is decreased.  The greater the distance 
they are apart, the higher the penalty.  The desired ranges and penalties 
for distance to unit leader, dispersion, and cohesion would be deter-
mined using the Adversary Templates generated during the IPB.  

4.3 Scenario Formation Scoring 

For our testing scenario the formation scoring algorithm is: 
 



Algorithm 1. The Formation Scoring algorithm  
 calculateTotalScore (unit) 

formationScore = 0 
for all entities in unit 
   formationScore += calculateEntityScore (entity) 
for all subunits in unit 
   formationScore += calculateTotalScore (subunit) 
return formationScore 

calculateEntityScore (entity) 
entityPositionScore = 0 
for all preferredTargets assigned to entity 
    entityPositionScore += preferredTarget’s node targetability 
for all FoF nodes assigned to entity 
   entityPositionScore += node targetability 
if(distance to unit leader > max distance to leader range) 
   entityPositionScore -= outside range to leader penalty 
if(distance to other entities > max cohesion range) 
   entityPositionScore -= cohesion penalty 
if(distance to other entities < min dispersion range) 
   entityPositionScore -= dispersion penalty 
if(entity’s node is targetable by opponent) 
   entityPositionScore -= targetability penalty 
return entityPositionScore 

5 Finding Maximizing Formations through Hill Climbing 

While there are a number of approaches to determining entity positions 
that maximize unit formation score, we developed a method using sim-
ple hill climbing from random positions.  We assign entities to a ran-
dom node on the map within an identified area of operation for their 
unit.  Then, each entity identifies neighbor nodes and evaluates what its 
position score would be at these nodes.  The entity then moves to the 
node with the highest position score and evaluates its position score at 
the new neighbor nodes.  This continues until all entities have moved to 
a node with a higher position score than all of its neighbors.  Since an 
entity’s position score is dependent on the location of the other entities 
in the unit, multiple rounds of hill climbing are conducted for the unit.  
We have found that generally after two rounds entities have found a 



maximum position relative to other entities.  Additionally, we found 
that running the first round of hill climbing without a dispersion penalty 
prevented entities from prematurely blocking another entity’s hill 
climb.  When all units have moved to their maximizing locations, we 
have identified a possible maximizing formation.    This process can be 
repeated multiple times, and the different initial randomization of entity 
positions will generate different formations at each iteration.  We can 
then either select the highest scoring formation generated, or sample 
from a distribution of possible formations. 
 An entity whose position is known from prior observation is 
simulated by holding its position constant during randomization and 
hill climbing.  The other undetected entities will take positions that 
maximize unit formation score in relation to the detected entity.  
 In developing our hill climbing algorithm we ran an experiment, 
testing it over 1000 runs.  The formation scoring function was kept the 
same, but random starting entity positions were selected for each run.  
We found that our hill climbing method increased formation scores by 
251% on average, while decreasing the relative standard deviation of 
scores.  Full results are shown in Table 1.   

Table 1. Hill Climbing method performance test results. 

 Starting Score Ending Score  Change % 
µ 12.320 38.414 251 
s 4.483 7.757 146 
s/µ 0.364 0.202 -55 

6 Scenarios/Results 

It is important to note that while the terrain used in the scenarios is 
from real-world data, the scale of distance between units is exaggerated 
for clearer visualization.  Additionally, the scoring function and penalty 
weights were scaled.  While they do not reflect exact military doctrine, 
they do simulate basic tactical positioning.   

For these scenarios, the enemy unit consists of a squad leader 
and two four-entity fire team subunits. Each fire team has a commander 
entity. The two commander entities will try to stay in range of the 
squad leader.  Fire team members will attempt to stay in range of their 
respective commanders.  Each fire team is also assigned a designated 



FoF.  Nodes in each FoF are marked with teal and green squares.  The 
targetability of nodes in the FoF is represented with a purple sphere that 
increases in size as targetability increases.  Starting and ending posi-
tions for our first scenario are shown in Figures 1 and 2. 
 
 

 
Fig. 1.     Scenario 1 starting random positions. Fire Team 1’s view of its FoF is completely 
blocked by a ridge.  Fire Team 2 starts the scenario with partial visibility into its FoF. 

 
Fig. 2. Scenario 1 ending positions after hillclimbing.  Fire Team 1 has moved over the ridge 
blocking their FoF and are now able to target a large portion of it.  Fire Team 2 has moved up 
into a split formation that allows it to better target the undulating terrain of its FoF.  Both Fire 
Teams have tightened unit formations. 

Our second scenario demonstrates how our predictor works 
when an enemy entity is detected.  This scenario focuses on a single 
five-entity unit.  One entity in the unit is detected by an opposing blue 
unit as shown in Figure 3.  Nodes that are targetable (simulating visibil-
ity for this scenario) by the blue unit are marked with a blue sphere.  



Formation scoring for the red unit is the same as in the previous scenar-
io, but red entities will avoid nodes that are targetable by the blue unit. 
The unit will attempt to maximize targetability FoF nodes and maintain 
spacing consistent with the previous scenario.   
 

 
Fig. 3. Scenario 2 overview.  A red unit is detected by a blue entity.  Two other red entities are 
undetectable by the blue entity.  Note how terrain features produce gaps in blue’s detection 
area, these are marked by the red ovals. 

 For this scenario we conducted 50 total hill-climbing iterations 
holding the detected entity’s position constant for all iterations.  The 
highest scoring formation represents the blue entity’s prediction of the 
red unit’s entity positions and is shown in Figure 4. 
 

 
 
Fig. 4. The highest scoring candidate formation.  Red units are predicted to be located in the 
gaps and edges of blue’s detection area.  This formation maintains red unit spacing and maxim-
izes targetability of the FoF (shown bottom right).  



7 Conclusions and Future Work 

In combat, commanders do not always have an exact position for their 
enemy threats.  They depend an understanding of the tactical environ-
ment and enemy objectives to estimate where threats are.  Our method 
simulates this understanding by building formation scoring functions 
based on the same products developed during the IPB.  This allows the 
AI to make estimations of threat locations using the same data available 
to human commanders, providing for a more realistic decision-making 
process.  In the future we would like to validate a more complex scor-
ing function against human predictions.  We would like to incorporate 
tactics such as avoiding lines of fire and use our predictor as part of the 
automated planning functions currently in WXXI.  

Reference 

1. Straatman, R., van der Sterren, W., Beij, A. “Killzone’s AI: Dynamic Procedural Combat 
Tactics.” In: Proceedings of the 2005 Game Developers Conference. San Francisco, CA 
(2005). 

2. Tozour, Paul. “Using a Spatial Database for Runtime Spatial Analysis.” AI Game Pro-
gramming Wisdom 2, Charles River Media. (2004). 

3. Isla, D. and Blumberg, B. “Object Persistence for Synthetic Creatures.” In: Proceedings of 
the First International Joint Conference on Autonomous Agents and Multiagent Systems. 
(2002). 

4. Bereton, C., “State Estimation for Game AI Using Particle Filters,” In Proceedings of the 
AAAI Workshop on Challenges in Game AI. (2004) 

5. Darken, C. and Anderegg, B. “Particle Filters and Simulacra for More Realistic Opponent 
Tracking.” Game AI Programming Wisdom 4. Charles River Media. (2008). 

6. Darken, C., McCue, D., Guerrero, M. “Realistic Fireteam Movement in Urban Environ-
ments.” In Proceedings of the Sixth AAAI Conference on Artificial Intelligence and Inter-
active Digital Entertainment. (2010).  

7. Hladky, S. and Bulitko, V. “An Evaluation of Models for Predicting Opponent Positions in 
First-Person Shooter Video Games.” In Proceedings of Symposium on Computational In-
telligence and Games. Perth, Australia. (2008). 

8. U.S. Army. “Intelligence Preparation of the Battlefield/Battlespace.” Army Techniques 
Publication 2-01.3.  Washington, DC: Headquarters Department of the Army.  (2015). 
https://armypubs.army.mil/epubs/DR_pubs/DR_a/pdf/web/atp2_01x3.pdf 

9. U.S. Marine Corps.  “Infantry Company Operations.” Marine Corps Warfighting Publica-
tion 3-10A.2. Washington, DC: Headquarters United States Marine Corps. (2014). 

10. Harder, B. “Automated Battle Planning for Combat Models with Maneuver and Fire Sup-
port.” Monterey, California: Naval Postgraduate School. (2017) 

11. Granberg, A. The A* Pathfinding Project. Ver. 3.8.2. Unity software asset. (2016). 
http://arongranberg.com/astar/. 
 

 


