Information Operations Analysis of NATO
Trident Juncture Exercise 2018

RESEARCH QUESTION
How can we characterize information operations surrounding NATO TRJE 2018?

CONTEXT
✓ The Trident Juncture Exercises are a large-scale military event symbolizing NATO’s commitment to international security
✓ Events of such scale trigger concerns about online disinformation
✓ We aim to empirically characterize information operations targeting public opinions about NATO TRJE 2018
✓ We focus on a Twitter dataset of 236,809 tweets collected from October 22 to November 13

TOPICS
✓ We optimally detected 4 topics:
 ❖ NATO Trident Juncture (70%) - primary NATO messaging, solidarity
 ❖ Collision of Helge Ingstad (3%) - frigate crash, NATO incompetence
 ❖ World Politics (6%) - international relations, conspiracies
 ❖ Opportunistic Marketing (21%) - piggyback on NATO hashtags

RESULTS

BOTS
✓ Using a 60% threshold, we detected 24,868 unique bots (30.49% of users in dataset)
✓ By removing special actors using the role identity algorithm, 10,072 bots remain (12.35% of users in dataset)
✓ Majority of bots were detected in the US, the UK, Norway, Russia, and Spain
✓ Bots drove discussion of the collision of the Helge Ingstad (31.97%), but also engaged NATO (25.63%) and world politics (20.30%)

INFLUENCERS
✓ We focused on the influence of Sputnik-affiliated accounts to assess Russian activity and its success
✓ Promoted anti-NATO stories about violence of NATO troops and aggravation of local conflicts
✓ Featured considerably larger proportion of bots than the rest of the conversation (41%)
✓ Little influence (max average 20 retweets), especially relative to NATO (between 6 and 300x less influence)

DISCUSSION
✓ Official NATO messages dominated the Twitter conversation surrounding the NATO TRJE 2018 in both quantity and influence
✓ Russian activity was detected but its impact was not substantial, especially in comparison to NATO messages
✓ Significant bot activity was detected especially surrounding key NATO members and Russia
✓ This work illustrates the value of interoperable pipelines for triangulating insights in examining information operations

Figure 1. Interoperable pipeline.

Figure 2. Diffusion of topics over time.

Figure 3. Estimates of bot activity.

Figure 4. Sputnik subnetwork.

This material is based upon work supported by the Office of Naval Research Multidisciplinary University Research Initiative (MURI) under award number N00014-17-1-2675. Any opinion, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the Office of Naval Research. Additionally, Thomas Magelinski was supported by an ARCS foundation scholarship.