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Abstract. Agent-based geospatial simulations have become very popular and
widely used in examining the social and cultural characteristics of populations.
Well-known toolkits such as NetLogo or MASON generally have scalability lim-
itations, especially when the model and underlying spatial infrastructure become
complex. This paper presents a framework for simulating large-scale agent-based
geospatial systems by integrating the multi-agent systems toolkit JADE with the
MASON agent-based modeling framework and its GIS extension, GeoMASON.
The proposed Java-based framework can simulate large areas with hundreds of
thousands of agents. It allows for the studying the evolution of a population and
its environment over time. Such a framework provides the essential first steps for
scalable model execution without sacrificing the model generality.

Keywords: Large-scale geospatial simulation - Agent-based Modeling - MA-
SON - Jade - GIS.

1 Introduction

In agent-based modeling and simulation (ABMS), a system is modeled as a collection
of autonomous and collaborative agents where each agent senses its situation, makes
decisions to fulfill its goals, and acts on the environment [17, 19, 8]. ABMS are increas-
ingly being used to study a wide range of complex phenomena, especially where large
numbers of agents (entities) are needed. Applications range from studying non-spatial
systems including modeling tumor growth and social networks [27] as well as a plethora
of spatial applications such as building evacuation [21], the spread of a diseases (e.g.,
[9]), and the emergence of slums in urban environments [22]. In addition to these appli-
cations, ABMS have been employed for traffic prediction [6, 20] and pedestrian models
and indoor navigation [3, 14]. Others have used such a methodology as data genera-
tors when “real world” data is missing (e.g., [11]). One could argue that these existing
simulations provide scalability, but lack the abstraction to be used beyond their spe-
cific domains. At the same time, computational social science has developed powerful
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toolkits to design agents and environments for discrete and continuous geospatial sim-
ulations (geosimulations) also including transportation networks (e.g., [12, 23]). Often
designed for quantitative studies and behavioral analysis, these geosimulations provide
abstractions, but do not offer scalability to large numbers of agents.

This paper fills this gap by proposing a scalable and general ABMS framework for
geospatial simulations involving networks. We propose solutions for the parallelization
of the single-threaded GeoMASON tookit [24] by employing the Java Agent Develop-
ment Environment (JADE) [5] for the communication between threads. Illustrated in
Figure 1, our resulting framework allows to scale different spatial scenarios to millions
of agents. For this purpose, we divide the space of our agents into partitions, each han-
dled by a separate thread of execution. The main challenge addressed in this work is the
synchronization between these threads. An agent may move between spatial partitions,
and may communicate with other agents located in other partitions. As these partitions
are running asynchronously, we must ensure that the clocks of different simulations are
synchronized to avoid race conditions.

The proposed framework is evaluated on an urban model [11] , which simulates
simple patterns of life within an urban setting. The model has spatial network for agent
movement and social network for maintaining social links. We compared the perfor-
mance of GeoMason [24] and the proposed framework on different settings, and con-
cluded from experimentation that the proposed framework is outperformed by GeoMa-
son when the agent population is small whereas with an increasing agent population,
our proposed framework outperforms GeoMason as the complexity and time taken in
simulation step increases substantially.

2 Related Work

Modeling and simulation has revolutionized many scientific and engineering fields in
the past two decades. Some of the first efforts were based on state machines and used
spatially explicit models for urban studies [4]. In recent years, advances in compu-
tational infrastructure have allowed to simulate large numbers of interacting actors,in
agent-based modeling and simulation. Abar et al. [1] present a comparative survey of
85 modelling and simulation tools for ABMS (including the well-known MASON, Net-
Logo, and Repast toolkits). The authors highlight the salient features and shortcomings,
and also specify the application domain or scope of each. In terms of scalability, only
three out of 85 toolkits reviewed support extremely scalable simulations, namely MAT-
Sim [10], PDES-MAS [25], and Repast HPC [7]. MATSim is a domain specific open
source framework and is confined to agent-based transport simulations. The PDES-
MAS framework is based on the Parallel Discrete Event Simulation (PDES) paradigm,
where the simulation model is divided into a network of concurrently executive pro-
cesses, each maintain / process a spatial shard of the entire simulation scenario.

This, however, is not a realistic assumption for geospatial simulations as partitions
are not isolated from the rest of the “world”. Following this assumption, for instance,
models with social network that requires agent-to-agent communication and interaction
within different zones will suffer. Given that agent-to-agent communication/interaction
is one of the hallmarks of ABMS [9], this assumption will limit developing realistic
large-scale geospatial agent-based models [2]. Repast HPC is the high performance
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Fig. 1: System Architecture of Proposed Framework

cluster implementation of the Repast [7] toolkit which is an open source agent-based
modeling and simulation platform. While it supports social network simulation and
provides the ability to integrate geospatial data, it requires re-implementation of the
model specific to Repast.

GeoMASON [24] is the geospatial extension of MASON [15], which is a general-
purpose simulation framework and designed to support a wide range of multi-agent
simulation tasks ranging from swarm robotics to social complexity environments [16].
GeoMASON supports various geospatial data formats including the support for read-
ing/writing shapefiles. Using GeoMASON, one can create medium- to large-scale geospa-
tial simulations. Here, the scale depends on the complexity of the agent logic and the
geometry of the spatial environment. The main challenge of MASON is that it supports
only single process execution. On the other hand, the Java Agent Development Environ-
ment (JADE) is a FIPA-compliant agent platform, which simplifies the implementation
of distributed multi-agent systems. This Java-based framework supports peer-to-peer
communication, is platform-independent, can be distributed across heterogeneous ma-
chines (including mobile devices), and supports the movement of agents across ma-
chines [5, 18]. JADE is the most popular industry-driven FIPA-compliant agent plat-
form in academic and industrial communities [13]. While JADE provides a heavyweight
agent architecture, we combine its strength in agent-to-agent communication with MA-
SON’s lightweight agent modeling support to address the aforementioned limitations
of each.
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3 System Architecture

The proposed framework is based on the layered agent architecture [26] to support
scalability, is implemented in Java, and considers agent-based models with the spatial
domain. Our proposed framework partitioned the spatial domain into so-called zones,
and each zone is controlled by a separate instance of GeoMason. When agents leave
the boundaries of their zones, they have to be passed from one GeoMason simulation
to another. Analogously, when agents intend to communicate with agents located in
another zone, their message has to be passed from one simulation to another.

To facilitate this communication, we implement each zone as a separate thread of
execution. Threads are orchestrated by the JADE multi-agent system to handle commu-
nication. Thus, each JADE agent handles its own instance of GeoMason, which handles
a potentially large number of simulation agents. We implement this functionality using
two types of Jade Agents: Zone Agents and a Master Controller Agent (MCA). A model
can have multiple Zone Agents, each running a GeoMason model instance for one par-
ticular zone. There is only one MCA that sets up the initial resource distribution and
provides the communication among the zones, as shown in Figure 1. The remainder of
this section provides more details for these two types of Jade Agents.

3.1 Master Controller Agent

MCA is the core agent that initializes and manages the whole system. During initializa-
tion, the MCA performs the following steps:

It reads the configuration file which contains the application parameters such as the
number of zones (), number of agents per zone (M), etc.

— It creates and initializes the global shared memory.

The MCA loads information about the spatial domain D and stores it in global
shared memory. It then calls the World Partitioning Module which splits D into M
zones.

It creates and initializes the Global Statistics Module which is responsible for up-
dating and displaying the global statistics of the application.

— The MCA creates and initializes N Zone Agents. It passes a unique zone identifier
(ZonelD), the number of agents to be created in this Zone Agent (M), and a
reference to the shared memory to each Zone Agent.

After initialization, MCA waits for updates from each Zone Agent and constantly
monitors the status of these agents. In case of any error in any Zone Agent, it logs
the error report, stops the simulation and re-runs the simulation from the last common
checkpoint.

World Partitioning Module This module takes the spatial domain D and the number
of desired zones (/V) as input and partitions the spatial domain D into N zones. In our
experiments we partition D into N parts of equal spatial size. In particular, we consider
the example of a spatial domain with an underlying movement network that agents use
for movement. While in our experiments we split the movement network using a simple
spatial partition as shown in Figure 2, the World Partitioning Module could implement
more sophisticated graph partitioning schemes that might aim to minimize the number
of edges along the cuts.
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Fig.2: Equal Split Spatial Network

Global Statistics Module This module is responsible for updating and displaying
the statistics of the running simulation. It fetches all the required information from
the global shared memory, and periodically updates the information. For example, the
Global Statistics Module, can display the number of agents , buildings, and the current
simulation step within the zone instance in the examples that follows (Section 4). How-

ever, the user can customize and display other information such as number of homes,
offices, restaurants etc, if required.
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Fig. 3: Agent transfer between Zones

3.2 Zone Agent

Following initialization, each Zone Agent initializes a GeoMason instance for its zone.
This instance can be initialized using a GUI or without (headless) depending on a pa-
rameter setting. The Zone Agent is responsible for keeping its instance synchronized
with the other instances running in other Zone Agents. A cyclic behavior is added to
each Zone Agent, which periodically calls the Synchronization Module to ensure that
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all Zone Agents are fully synchronized. Each Zone Agent keeps track of all the agents
running in its GeoMason instance. These agents can move between zones, either by
traveling between zones or by switching zones permanently. If an agent A moves from
zone Zs to zone Z1, then the Zone Agent for Z, performs the following steps: (1) It in-
forms the Zone Agent for Z; about A’s arrival time, (2) it changes A’s status to transit,
and (3) it calls the Zone Transfer Module to move A to Zone Agent 71, see Figure 3.
After every C steps, where C' is a configurable parameter, the Zone Agent creates a
checkpoint for its local simulation, which is used by the MCA to re-run the simulation
in case of an error.

Synchronization Module Each Zone Agent has Synchronization Module, which is re-
sponsible for synchronizing the given zone with others as shown in Figure 1. It performs
the following steps: (1) Compute the difference D between the maximum simulation
step of the other Zone Agents and the current simulation step of this Zone Agent. (2)
Check if *OutofSync’ is true, go to step 4. (3) If D is greater than a pre-defined thresh-
old, inform the Zone Agents by setting the *OutofSync’ flag in the shared memory to
‘true’. (4) If D is greater than zero, run the simulation for D steps, and once complete,
set ’SyncDone’ to true for this ZoneAgent. (5) Wait until *AllSync’ is true, and then
resume the simulation. (" AllSync’ is set to true when all Zone Agents set ’SyncDone’
to true.)

Zone Transfer Module This module takes three arguments: Agent A, the initial zone
Z;, and the target zone Z; that A is moving to. This module performs the following
steps: (1) Update A’s location in the global shared memory. (2) Remove A from the
instance scheduler and agent list in Z;’s GeoMason instance. (3) Send a message to
Z; by passing A’s object as an argument. Z, in turn, adds the agent to its instance
scheduler and agent list and sends an acknowledgment to Z; when it is done.

4 Experimental Evaluation:

We evaluated our framework on the Urban Life model [11] which simulates simple pat-
terns of life within an urban setting. The model has a spatial network for agent move-
ment and assumes that each agent 1) has a home, 2) has a job and goes to work five
days a week, 3) have friends, 4) has attributes (the most important one is happiness), 5)
goes to the bar on weekends and a goal (maximize its happiness). Initially, each agent
in the model is assigned a random home and work location, but during the simulation,
the agent can decide to change home or work locations. During the simulation of a day,
agents go to work in the morning, following the shortest path. After an (agent-specific)
time at work, agents then return home on the shortest path.

The urban model has two types of social networks: a friends network and a work
network. Initially, an agent is connected to every other agent sharing the same home
(work) location in their friends (work) network. In this highly stylized model, each agent
also has a dynamic attribute “happiness”. The happiness of an agent increases, when the
number of social connections (of the corresponding friends and work networks) that
are in the agent’s proximity, is in a certain range. Thus, having too few or too many
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friends/co-workers around will make the agent sad. The minimum and the maximum
number of this “sweet spot” is user-specified. Should the agent’s happiness reach zero,
the agent will “relocate” and will randomly select new work and home place in its
vicinity while resetting his happiness to the initial value.

The experimental results reported in this section are collected using an Alienware
laptop (Processor: 2.2 GHz Intel Core i7, RAM: 16GB, Graphics: Intel HD Graph-
ics 1536 MB, OS: Microsoft Windows 10 Pro). The spatial network contains 51, 309
nodes, 131,076 edges (average degree per node is 2.55), 65538 segments. Each Geo-
Mason instance is aware of the spatial network to simplify shortest path computation.
However, each zone knows its boundary. The social network is global, shared between
each instance, and synchronized every night. Using GeoMASON with our JADE exten-
sion, the maximum number of agents that we can run is about 4x when compared to the
standalone GeoMASON simulation. The framework provides separate visuals for each
zone showing agents moving throughout the “day”. Agents might pass from one zone to
another. Figures 4 a-d show screenshots of zone-specific visualizations, whereas statis-
tics for each zone are shown in an additional window. The framework also supports
headless runs.
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Fig. 4: Simulation using proposed architecture.
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Table 1: GeoMason (GM) vs Jade-GeoMason (JM) with Hard Synchronization(HS) and
Soft Synchronization(SS)

Agent Population| GM Time|JM Time(HS)|{JM Time(SS)
50,000 9.82m 12.48m 8.71m
100, 000 23.14m 25.09m 15.31m
500, 000 132.8m 127.2m 111.2m
1M - 218.41m 191.9m

4.1 Scenario 1

We compared and evaluated the performance of GeoMason and Jade-GeoMason (with
four zones) on different agent population with hard synchronization (the GeoMason
instances are synchronized whenever the step difference between the instance is more
than one a) and soft synchronization (the GeoMason instances are not synchronized un-
less the step difference reaches a max difference threshold (configurable) or the agent is
transferring from one zone to another). The initialization process is the same, i.e., agent
work or home location can be in different zones, and either hard sync (i.e., the simu-
lation step for each GeoMason instance should be the same) or soft sync (i.e., the Ge-
oMason instances are only synchronized when the agent is transferring from one zone
to another) is applied. The social network in Jade-GeoMason is global and synced once
at night (simulation time). In this scenario, the agents frequently move between zones
while traveling. The proposed framework with hard synchronization is outperformed
by GeoMason when the agent population is small, i.e., one instance is sufficient since
our model has a synchronization overhead. However, when an increasing agent pop-
ulation, our proposed framework outperforms GeoMason as the complexity and time
taken in the simulation step increases substantially, as shown in Table 1. Furthermore,
simulation with soft sync takes less time because of less synchronization overhead as
compared to hard sync. Moreover, GeoMason is unable to simulate more than 600K
agents for the Urban Life model, whereas Jade-GeoMason successfully simulated 1M
agents.

4.2 Scenario 2

In this scenario, we evaluated the effects of different synchronization mechanisms and
agent locations (home and work) on the performance of our proposed framework. In-
stead of hard synchronization, the instances are not synchronized unless the step differ-
ence reaches a maximum difference threshold (configurable), or the agent is transferring
from one zone to another; we named this mechanism “soft synchronization” (SS). The
results for this scenario are shown in Table 2. Restricting the agents’ home and work
locations within the zone (ZM) significantly reduces hard synchronization time. There-
fore, if more sophisticated graph partitioning schemes that might aim to minimize the
number of edges along the cuts are used for partitioning (i.e. reduces transfer between
zones), further performance boost for the framework could be achieved. Combining
soft synchronization with zone-level location restriction significantly reduces the total
simulation time as unnecessary synchronization is avoided and transfer between zones
is minimized.
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Table 2: Runtimes using Soft Synchronization (SS) and forcing work and home location
within the same zone (ZM).

Agent Population| SS /M |SS +ZM
50,000 87Im | 7.41m | 5.12m
100, 000 15.31m|12.80m| 9.98m
500, 000 111.2-m|121.4m| 77.51m

5 Discussion and Future Work

Many factors such as partitioning, model complexity, agent population, hard synchro-
nization, cross-zone movement frequency can influence the performance of our frame-
work. In general, the framework can outperform the GeoMason simulation if the model
complexity is high and the agent population is large. However, more experimentation
using different models is needed to evaluate the effect of these factors on performance.
We plan on further evaluating the proposed framework using models, partitioning tech-
niques, and parameter settings. The experimentation reported in this paper is performed
on a single node, and we plan to distribute zone simulations over a cluster (as JADE
supports network deployment) and evaluate the performance of the framework. While
what is presented is a rather stylized version of patterns of life and how work and home
networks evolve. We are currently working on adding more realistic movement patterns
and social network generation into the model and adding more realistic movement rules
and millions of agents.
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