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Abstract. In the wake of the January 6th insurrection and 2020 protests,
modeling the tipping point of crowds facing adversarial entities has be-
come a more timely and pertinent research field. Limited research has
been performed on the effects of discreet malevolent agents compared
to overt bad actors such as mass shooters or suicide bombers. Further-
more, the current literature on evacuation models does not consider the
presence of bad actors. In this paper, we build an abstract evacuation
model where agents operating in a cellular space proceed toward an ‘exit’
location across two scenarios: one without a malevolent actor(s) and the
other with one. In the latter scenario, the bad actor(s) will reach the exit
but not leave, impeding efficient evacuation. Analysis shows that crowd
agitation levels, the presence of individuals willing to engage physically,
and the loss of an exit drive total evacuation time.

Keywords: agent-based modeling · bad actors · crowd dynamics · evac-
uation · MESA.

1 Introduction

This paper explores the impact of malevolent agents that seek to disrupt an
evacuation and the resulting crowd dynamics initiating conflict between the
evacuating and malevolent agents. Compared to the modeling efforts of other
bad actors that are explicitly lethal, i.e., active shooters or suicide bombers, the
malevolence of agents impeding efficient evacuation is limited. Still, the com-
bination of evacuation and subversion within a crowd dynamic framework, to
include modeling the tipping point of violence, is novel Agent-Based Modeling
(ABM) research.

Our model sits at the intersection of three research domains: evacuation
modeling, cooperative agents/crowds, and bad actor modeling. This is illustrated
in figure 1 with the pertinent literature annotated by domain. It is the unique
combination of topics that makes our work novel within the field. Figure 1 serves
as the structure for the following literature review.

1.1 Evacuation Modeling

There are many examples of evacuation scenario research and modeling, fre-
quently for the purposes of fire evacuation. Owen et al. [14] developed a build-
ing fire evacuation model, representing a hypothetical supermarket and taking
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Fig. 1. Synthesis of evacuation, cooperation / crowds, and bad actor related literature.

agent characteristics such as movement speed, size, and reaction times into ac-
count. Their results show a variety of evacuation performance measures based
on changes in pedestrian travel speed and response times.

Hou et al. produced a social force evacuation model evaluating the efficacy
of evacuation leaders and their presence near exits, concluding that emergency
plans should identify leaders for the number of exits necessary in a given scenario
[10]. The use of cellular automata (CA) space, similar to the model presented in
this paper, has been employed. For example, the work of Yuan and Tan [21] used
CA to model fire evacuation and took visual spatial distance, occupant density,
and human behavior effects into account.

1.2 Bad Actors

There is abundant research on the impact of overtly malevolent agents, rang-
ing from their effect on other non-threat agents to the efficient functioning of
systems. Briggs and Kennedy [7] produced an Agent-Based Model (ABM) for
active shooter scenarios, specifically exploring the “run, hide, fight” resistance
paradigm. The cooperative resistance elements of their research place their work
in the union of Bad Actors and Cooperative Agents. Further analysis of overtly
malevolent actors in active shooter scenarios has been performed by Arteaga
and Park [3], as well as Anklam et al. [2]. The master’s thesis by Stewart [17]
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specifically focused on classroom active shooter scenarios, with three primary
parameters: law enforcement response time, civilian response strategy, and cog-
nitive delay.

Another well-researched category of bad actors includes suicide bombers.
Alghamdi et al. [1] put forward a general blast wave model accounting for crowd
density, partial and full cover, and type/quantity of explosive. Other research
includes suicide bomber target decision making by Bulleit and Drewek [8], their
efforts having similarity to the classic linear programming attacker-defender or
defender-attacker-defender ontologies.

1.3 Cooperative Agents

Copious research exists regarding cooperative agents. Axelrod and Hamilton
[4] famously demonstrated the effectiveness of cooperation in the prisoner’s
dilemma, notably when tit-for-tat agents meet each other. Other examples in-
clude the benefits of cooperation via contribution with empirical inputs derived
from observations of over 150 human players engaged in public good games by
Wunder et al. [20]. Other domain-specific research showing the benefits of the
cooperative game theory include Wang et. al. [18], as well as Zolezzi and Rudnick
[23].

Reinforcement learning produces cooperation among agents as well, notably
(and adorably) with Baker et al. [5] employing OpenAI’s tools to multi-agent
hide and seek. Cooperation emerged to produce increasingly complicated strate-
gies for both the hiders as well as the seekers. The evolutionary back and forth
mirrors the defender-attacker-defender paradigm, looped indefinitely, as cooper-
ation manifested increasingly novel behavior of the agents.

Research at the intersection of evacuation and cooperative agents has been
performed by Cheng et al. [9], finding that cooperation emerges in emergency sce-
narios when agents have high levels of escape aspiration. Other research demon-
strated crowd imitation increases cooperation in evacuation scenarios, but higher
degrees of emergency lower cooperation [22].

The distinction between cooperation/non-cooperation and bad actors is im-
portant. Self-serving non-cooperation in evacuation models can limit evacuation
efficiency, as shown by Zheng and Cheng [22]. However, lessened efficiency via
non-cooperative self-interest is distinctly different from active impedance of sys-
tem function with bad actors.

Lastly but importantly, Reicher [16] put forward an analysis of the student
protest cooperation and crowd dynamics during the “Battle of Westminster”
when clashes between students and police seemingly erupted spontaneously.
Across many interviews, Reicher found that agitation, the perception that a
right is being deprived, and the presence of individuals willing to engage in the
physical violence are the requirements necessary to spur a crowd to collective
action. Reicher’s research underpins the agent agitation and engagement logic
in our model.
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2 Model

2.1 Environment and Model Parameters

The environment of the model is designed based on a spatial grid with a 20x20
non-toroidal cells. We assume that only one agent may occupy a cell, and all
agents are randomly placed for a given model iteration. For the purposes of
evacuation and adding spatial components representing a room, non-interacting
“wall” entities are added, structuring two doors leaving the space as well as a
central pillar. We envision this as a conference room. Figure 2 shows an instance
of the model space, with evacuation agents in blue, evacuation agent heroes in
green, malevolent agents in red, wall entities in black, and the exits outlined in
green.

Fig. 2. Model space example with agent density = 0.2, 1 malevolent agent, and 3 hero
agents.

Model parameters are agent density as a fraction of the total model space
(variable range between 0.1 to 1.0), the number of malevolent agents ranging
from 0 to 3, the probability of an evacuation agent being a hero ranging 0 to 0.5,
the tipping point threshold for crowd violence on a 0 to 1 scale, and the agitation
increase of evacuation agents near the exit ranging from 0 to 1.0 each model step.
Default initialization is set to density=0.75, malevolent=1, hero probability at
2.5%, and a 0.5 tipping point. However, these settings can be changed within
the browser-based graphical user interface (GUI) or in code for batch runs.

2.2 Agent Behavior

At each model step, each agent activates in random order with the order reshuf-
fled each step. During activation, the agent calculates the shortest Euclidean
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distance to the exits for each available empty space around the agent as a Moore
neighborhood [13]. Figure 2 shows the currently active agent identified in orange
outline with available movement options a, b, c, d, e, f . The distance between each
movement option and the nearest exits, denoted as x and y, are calculated. In
the Figure 2 example, the c, x and d, y pairs have equal shortest distances. The
agent will select the first sequential best move, in this case, moving to position
c.

Fig. 3. Example agent movement options.

Provided at least one available move, agents will move each step, even if a
move brings the agent further from an exit. Referring to the example in Figure
2, if the only available moves were locations a and f the agent would move to f .
While suboptimal for evacuation, we contend that this behavior resembles crowd
shuffling and the chaos of emergency scenarios.

Upon reaching an exit location, evacuation agents are removed from the
model and schedule. The simulator logs these agents as part of an escaped count,
as well as the total remaining evacuation agents and the current step. Malevolent
agents exhibit identical behavior as evacuation agents, with the exception that
upon reaching an exit, they are removed from the schedule but not the model,
blocking the exit cell. The model run concludes when all evacuation agents have
escaped.

The conflict between the evacuation and malevolent agents is represented
by the removal of the malevolent agent and restoration of the exit, initiated
when the following criteria are met: One, evacuation agents possess an aggregate
agitation score above the tipping point threshold. Agitation increases each model
step when the agent is within a 3 x 6 zone near an exit.

Second, a malevolent agent is required to be blocking an exit space. Third and
finally, the evacuation zone requires the presence of a hero evacuation agent, one
that is willing to “physically confront” the malevolent agent. With these criteria
met the model’s engagement parameter is set to “True” and the malevolent
agent(s) impeding the exit(s) are removed.
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2.3 Implementation

The model was built in Python 3.10.2 and predominantly structured in Mesa
0.9.0. Mesa “allows users to quickly create agent-based models using built-in core
components (such as spatial grids and agent schedulers) or customized imple-
mentations; visualize them using a browser-based interface; and analyze their
results using Python’s data analysis tools” [11]. As a somewhat nascent Agent-
Based Modeling (ABM) environment, Mesa does not natively include the ability
to create irregular shaped grids, strictly allowing for m x n structures. The use
of non-interacting "wall agents" is our work-around to this limitation which, to
our knowledge, does not exist within other Mesa models.

3 Analysis of Results

3.1 Parameter Settings and Coefficient of Variance Determination

Mesa includes a BatchRunner module enabling multicore batch runs, parameter
sweeps, and data output/capture for a given model [11]. Preliminary analysis
was performed with data captured from the following parametric combinations,
of which there are 2592 total. Replications ranging from 5 to 50 were performed
for each parameter combination set. The parameter ranges were selected based
on saving computational resources via limiting dimensional growth, informed
by initial overview analysis and testing. For example, limited statistical change
exists with Hero Probability at 0.50 and above due to continuous hero presence.

Table 1. Batch run settings.

Parameter Setting(s)
Density .25/.50/.75
Hero Probability 0/.10/.20/.30/40/.50
Malevolent Agents 0/1/2/3
Tipping Point 0/.20/.40/.60/.80/1.0
Agitation Gain 0/.20/.40/.60/.80/1.0

Due to the 2592 parametric combinations and the functional similarities be-
tween different sets of combinations, the coefficient of variance testing required
few replications. We use the equation (1) proposed by Lee et al. [12]. Here, σ
represents the standard deviation, and µ represents the mean. We found that
the increase from 5 to 10 replications produced a coefficient of variance change
under epsilon 0.01; thus, analysis in the following sections was performed on
data output from the 10 replications batch run.

cv =
σ

µ
(1)
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3.2 Time to Evacuate

Total steps for all agents to evacuate is our primary metric of interest and is
most impacted by agent density. The three density settings, 0.25, 0.50, and 0.75,
are clearly visible via the clustering in Figure 4.

Fig. 4. Violin plot of total evacuation time in steps.

Scenarios with 2 or 3 malevolent agents, i.e., situations with the potential to
fully lose access to an exit, are those showing the maximum time to complete
evacuation and the largest standard deviation in total model steps. However,
permanent loss of an exit was only possible in parametric combinations where the
model’s engagement parameter was precluded from switching to True, requiring
one of the following:

– Hero probability equal to 0.0
– Tipping point of 1.0
– Agitation gain of 0.0

Without one of the above parameter settings, the potential for engagement ex-
ists, and the loss of an exit is frequently temporary. For simulations where en-
gagement was possible, i.e., none of the above parameter settings and at least one
malevolent agent, engagement occurred 74.6% of the time across the remaining
parameter space.

Model behavior in terms of time to evacuate and the conditions affecting
evacuation time the most are as expected, i.e., more total agents, more malevo-
lent agents, and parameter settings lowering the likelihood of engagement corre-
late with longer evacuation time on average. Due to this aggregate behavior as
intended and anticipated, we conclude the model is verified.
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3.3 Engagement Analysis

The factors and conditions leading to changes in crowd behavior are of broader
and continuing research interest. Using the data obtained from the batch runs,
we conducted Logistic Regression, and machine-learning [15] based feature im-
portance measures. The five parameters affecting the potential for engagement
(density, hero probability, number of malevolent agents, tipping point, and agi-
tation increase) were set as independent variables with the True/False boolean
for engagement as the dependent variable.

The logistic regression model was trained after an extensive hyperparameter
optimization leading to a maximum accuracy score of 0.77. This result tells us
that a linear model can explain relatively high variation; however, there are
relationships that require a non-linear model. To go deeper in our evaluation,
we looked at the Logistic Regression’s coefficients as shown in Table 2.

Table 2. Logistic Regression Results

Parameter Coefficient
Density -0.16
Hero Probability 0.77
Malevolent Agents 1.16
Tipping Point -0.95
Agitation Gain 0.78

Here, except for the density parameter’s coefficient, the remaining four pa-
rameters’ coefficients were statistically significant. However, their contribution
was not all identical. The coefficient with the highest contribution was the num-
ber of Malevolent Agents, which impacts engagement positively. Hero Probability
and Agitation Gain were the other two positive parameters that contribute to
the odds of having an engagement. These positive contributions make sense and
are expected. The Tipping Point parameter’s coefficient, on the other hand, neg-
atively contributed to the odds of having an engagement. This also makes sense
because a higher tipping point will lead to less engagement.

We have also created a Random Forest [6] classifier to verify the coefficients
found in the Logistic Regression model. With the hyperparameter optimization,
the model performed approximately 99.5% accuracy and provided a Gini-based
[6] feature importance measure. The results we found confirmed our previous
co-efficient finding.

4 Conclusions and Future Research

We successfully implemented an evacuation scenario within the Mesa environ-
ment and crafted a solution for irregularly shaped cellular automata that, to our
knowledge, do not exist within current Mesa models. Model runs and analysis
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demonstrate the importance of maintaining maximum exit availability in the
event of an evacuation, with the complete loss of an exit being the largest de-
terminant of extended evacuation time (steps), aside from initial density. While
expanding agent behavior and shaping against actual locales and known evacua-
tion data is necessary for model verification, we conclude the model is validated
due to its behavior.

Our exploration of crowd behavior in the presence of malevolent actors is
potentially the first in a new research domain. Combining the techniques of other
evacuation models with our preliminary work will produce further insights into
system performance in bad actors’ presence. Moreover, continued work within a
Python and Mesa environment will empower the use of more robust analytical
tools and feedback within a single development framework, as opposed to the
post-simulation limitations presented by established tools such as NetLogo [19].

We are specifically focused on two focal points for further development: im-
proved crowd behavior and real location modeling. Expanded crowd/agent be-
havior includes implementing a social force model of movement or distinct agent
movement qualities. Examples include the line of sight and variable movement
speeds. Implementing cooperation among malevolent agents or the ability to
fight back when engaged are other areas for refinement.

Adapting the model to simulate real evacuation scenarios is our other focal
point for continued research. Comparisons of simulated results to reality are
steps toward model verification.

Notes: Additional information, code, and datasets for this paper are freely
available at https://github.com/clarkpetri/evacuation-model.
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