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Abstract. Reinforcement learning methods can successfully solve many
real-world problems. Multi-agent reinforcement learning involves coop-
eration among multiple agents and has seen successful applications in
diverse domains such as robotics, distributed control, and economics.
However, some of the remaining challenges that need further discussion
are that of fairness and the formulation of a problem that is free of bias
and discrimination. In this paper, we consider what be identified as fair
behavior in multi-agent systems. Multi-agent reinforcement learning is a
framework that has many applications which can mimic and solve real-
world optimization problems that consider multi-agent interactions. In
this paper, we aim to discuss possible approaches that incorporate fair
behaviors and pay attention in particular to the priority of agents in the
systems. We aim to maximize the overall utility across all agents while
incorporating agent priorities based on their types.
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1 Introduction

Reinforcement learning (RL) methods have been successfully applied to vari-
ous domains including robotics [1,2], transportation [3], autonomous driving,
industry automation [4] and epidemic mitigation [5] resulting in new and better
solutions [6]. Deep RL has proven to be a powerful tool for solving a diverse
range of complex problems [7]. RL can be used to solve problems with a high
degree of stochasticity such as problems in supply chain management, IoT, and
networking [8].

Many real-world problems require multiple RL agents to cooperate with each
other [9]. These problems fall into the realm of multi-agent reinforcement learn-
ing (MARL). MARL has been successful in many applications such as controlling
UAVs [10,11], efficient utilization of resources [12-15], transportation [16,17], and
social sciences [18,19].

One significant challenge that remains unresolved in the field of RL is that
of fairness, which in the context of decision-making protocols this means free of
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bias and discrimination. As is common with any ethical consideration, it is nec-
essary to consider different conditional contexts for fairness in a given decision-
making process. In the case of an RL-program’s model and workflow, it is the
responsibility of the RL practitioner to limit the possibility of discrimination, to
explain the model’s fairness considerations to the user, and to ensure that the
fair decision-making process is reproducible throughout the entirety of the RL
framework.

As in human-human interactions, in RL, eliminating bias entirely is not re-
alistic but it is possible to weed bias out of the program through the integration
of certain rules into the problem formulation stage. In order to ensure fairness in
RL, it is necessary to guarantee that predictions are calibrated for the group of
agents in the RL model that abide by certain decision boundaries. However, in
addition to “group fairness” calibrated to a selection of agents, it is also necessary
to account for individual fairness, such that each agent understands it is being
treated fairly by the RL system, or at the very least understands the decision-
making process that causes separate agents to reach their individual/common
goals differently.

The objective of any artificial intelligence (AI) system is set by humans to
benefit us and the planet. Al systems must incorporate our goals and preferences.
While formulating the task or the objective, we need to consider the sense of
fairness that agents learn and their ethical principles and behaviors. This is
extremely important, as the policies they learn will be applied to real-world
applications or interactions.

Agents optimize the process for accomplishing the objective and while doing
so may incorporate bias given the objective, the task formulation or the data
used to train them.

In this paper, we consider fair behaviour in multi-agent systems. MARL is a
framework that has many real-world applications which can mimic and solve real-
world optimization problems that consider multi-agent interactions. However,
utilizing certain common algorithms, like deep g-networks (DQN) or actor-critic,
leads to the learning of an optimal policy that may result in the unfair behavior
of agents; agents can learn to maximize their utility at the expense of others
and take advantage of a free ride. In this paper, we aim to discuss possible
approaches that incorporate fairness behaviors and pay attention in particular
to the priority of agents in the systems. We aim to maximize the overall utility
across the agents, while incorporating agents prioritised based on their types.
Our contribution can be summarized as follows:

1. Propose possible approaches regarding agents’ priority assignments in multi-
objective problems using various approaches based on the task specification.

2. Define three case studies that represent real-world scenarios based on multi-
agent interactions using the partial observable Markov decision-making pro-
cess (POMDP) framework.

3. Show empirical results of case studies by applying various priority assignment
strategies, where RL agents training was based on the offline reinforcement
learning method.
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2 Background

In this section, we formalize a multi-agent interaction in a partially observable
Markov decision-making process (POMDP) framework and describe the offline
reinforcement learning method that we are using to train our agents. We also
review the ethical background behind the multi-agent interactions.

2.1 Partially Observable Markov Decision Process

We model the problem in the framework of a partially observable Markov de-
cision problem (POMDP) which can be formalized by a tuple (S,0, 4,7, p,~),
where S denotes the set of states in the environment s € S, O represents the
observation i.e., what the agent can see (agent does not have access to the
entire state representation and thus holds only partial observability), and A
refers to the set of actions that the agent can take a € A. The reward func-
tion r : § X A — R determines the immediate reward. The transition probability
p: SxAxS characterizes the stochastic evolution of states in time P(s;41]|s¢, at).
The constant 7 € [0,1) is a scalar discount factor. At each time step ¢, the agent
takes action a. The agent learns a policy 7 : O — A that maps observations to
actions.

The RL objective, J(m) can be written as an expectation under the trajectory
distribution:

J(7) = Errup, () [ETZM a»] (1)

t=0

In multi-agent reinforcement learning (MARL), the objective of each agent is
to learn an optimal policy to maximize its value function. Optimizing the vJ for
agent j depends on the joint policy 7 of all agents, the concept of Nash equilib-
rium in stochastic games is therefore of great importance [20]. It is represented
by a particular joint policy 7., [r},...,7Y] such that forall s € S, j € {1,..., N}

and for all valid policies 77 of the j’s agent it satisfies
v (s;my) = v (s, ) > 0l (sl ).

Here we adopt a compact notation for the joint policy of all agents except j as
) = [’ﬂ'i,...77T171,7T1+1,...,7Tiv].
Given a Nash policy 7., the Nash value function
vNesh(s) = vl (s),..., 0 ()]

™ Y VT

is calculated with all agents following 7, from the initial state s onward.
It can be proved that under certain assumptions, the Nash operator HN2sh
defined by the following expression

HY*Q(s,a) = Eynp[r(s, a) +y0™*(s")] [21] (2)

forms a contraction mapping, where Q = [Q*, ..., QY] and r(s,a) = [ri(s,a),...,7V (s, a)].
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2.2 Offline Reinforcement Learning

For our experiments we use offline reinforcement learning algorithm advantage-
weighted regression (AWR) [22] to train the agents. Offline reinforcement learn-
ing is a method whose learning policy is based on the previously collected dataset
which allows us to limit the number of interactions that the agent may have with
the environment. This approach helps to apply this method to more complex
real-world scenarios, where interacting with the environment can be challenging
or time-consuming. In offline RL, the agent is provided with a static dataset of
transitions D = {(o¢, at, 0t41,7+)} and it aims to learn the optimal policy using
this dataset.

We use the dataset D to fit a value function V,P(s) to the trajectories by

computing the Monte Carlo returns R, = Ztho e [21];

VP (s)¢+—argminy, Eg op { RQQ—V(S)Z’}

Trt1<argmax, Es oop | logm(als) exp(é(R?a—VD(s))):|

2.3 Psycho-cultural Background

Previous research [23] has highlighted the primary relevant feature of an ethical
theory as the ability to identify and order actions and their immediate outcomes
across states of environments.

Some research [24] has introduced a function C(u) that indicates whether
the chosen reward function is the preferred ethical utility function for the agent
to follow.

The cake or death example represents a number of possible unethical de-
cisions that can result from an agent choosing actions following this rule or a
variant of this rule [24]. In their work the authors suggest that an agent pre-
dicts its meta-utility function, represented as the linear combination of possible
ethical utility functions. This prediction is based on changes from information
gathering actions, which results in future sub-optimal decisions given its current
meta-utility function. They suggest keeping the model for the probabilities of
ethical utility functions independent from the model that predicts the world.
This facilitates the possibility for the agent to predict observations that would
inform what constitutes the correct ethical utility function, without simultane-
ously predicting that same ethical utility function.

The authors highlight that it is unclear how such an agent may be designed
and whether satisfying those properties would allow for effective tradeoffs be-
tween learning about what is ethical and making ethical decisions.

Previous studies also include discussions on ethical principals in multi-agent
settings applied to particular domains, e.g. social factors affecting climate change
mitigation [25]. In their work, the authors highlight that different reward mech-
anisms that target different social factors could result in different emergent be-
haviors.
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3 Methodology

In this section we introduce our priority assignment architecture, based on dif-
ferent prior information about the agents.
Proposed architecture is summarized in Figure 1.

Maximize the # of agents Prioritize the agents that can
r—> that reach the goal given reach the goal in the limited
limited timesteps timesteps

Agents are not pre
assigned priorities

Agent's type

Dynamically request
—>{ information from
environment

Modify reward function/
> environment setup to
consider priorities

Dynamically assign

Agent objective type priorities

Other details about
agents

Maximize the total utility
given limited resources

Y

Agents are pre
assigned priorities

Fig.1: Architecture for ensuring fairness. We consider scenarios in which the
agents are pre assigned priorities and also scenarios in which they are not.
We consider scenarios in which the agents maximize their utility given: lim-
ited timesteps, limited resources, and dynamically requested information from
the environment.

We formulate a problem in a form of multi-agent multi-objective grid-world.
The observation is discrete and represented as (x,y) coordinates of the grid.
Action space represented in a discrete form where A € {N, E, S,W}.

The environment consists of n-agents (Ao, A1, ..., Ap), where each agent
has its own goal (Go, Gy, ..., G,,). We consider a collaborative environment with
multi-objective setup. In other words, A; has to reach goal GG;. Agents cannot
share the same grid location at any time-step ¢, such that Li tA" # Li tAj (where
Li represents grid location 4), and where A;, A; are any two agents. Additionally,
we introduce two blocks around which the agents must navigate. For the base
problem setup we consider the same reward function for every agent as Ry =
Ry, ...,= R,. More details can be viewed on Figure 2a.

4 Case Studies

We consider three case studies, each with various initial problem setups, pro-
pose solutions and show experimental results. Our agents were trained using a
modified version of the AWR method.
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(a) Multi-agent multi-objective prob-
lem setup. Here, (Ao, A1, ..., As) rep-
resent the 6 agents and (Go, G1, ..., Gs)
represent their respective goals. There
are two road blocks around which the
agents must navigate.

G5 G4 G3 G2 Gl GO

A0 Al A2 A3 A4 A5

(b) Here, (Ao, Ai, ..., As) represent
6 firetrucks and (Go, G1, ..., Gs) repre-
sent their respective goals. There is a
main water tank from which the agents
must fill their tanks to extinguish the
fires at their goal locations.

Fig. 2: Multi-agent multi-objective problem setup.

4.1 Case 1 — Priority based on the agent’s type

Problem formulation For this case study, we consider a scenario in which
agents belong to different types. The priorities are assigned based on the type
of the agent. This type of setup is modeled after real-world scenarios in which
certain participants are deemed more essential, e.g. in the domain of transporta-
tion. Certain transportation vehicles can carry a type of ’emergency designation’
such as ambulances, police cars, fire trucks, as opposed to ‘regular vehicles’. We
can assume the priority of an agent based on its expected utility. For example, in
the case of a large fire, a fire truck might have a more essential task to complete
and thus will hold a higher priority over a delivery truck dropping off a package.
We adjust our problem formulation in such a way that each agent is provided
with a cumulative reward distributed across all agents. Thus, the agents’ ob-
jectives are not limited to maximizing their individual rewards but rather are
administered in order to maximize the cumulative reward. Thus, the agents will
learn the overall optimal policy in such a way that the total utility across all
agents is maximized.

Experimental Results In the typical formulation in which all agents have the
same priority, we observe that some agents (e.g. A3 and A4) spend twice the
amount of time to reach their goal, compared to their optimal path in the case
of a single-agent setup, as shown in Figure 3. When we assign different priorities
to the agents, we see that they reach their goal in a shorter amount of time, as
other agents learn to give way to the agents with a higher priority in order to
maximize the total utility across all agents.
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Fig.3: Comparison of the number of steps taken by an agent in a prioritized
vs non-prioritized setting. Values are represented as a fraction of an optimal
number of steps taken in a single agent setting.

4.2 Case 2 — Priority based on the shortest path

Problem formulation In this scenario, we consider a problem setup with a
limited time frame, so that agents with the shortest path to the goal will have
priority over others. Agents must learn a strategy that maximizes the number
of agents that achieve their goal within a limited time frame, even if it means
that they themselves do not achieve their goal. We keep the rewards for all
agents the same. This application may be somewhat analogous to airplane seat
assignments based on the priority level of the purchased ticket. Thus, a passenger
with a higher priority will reach their seat faster, while the seat location also
typically is reached through a shorter path than that of a passenger with a lower
priority ticket. So passengers with the seats located further down the plane cabin
will have to give way and wait a certain amount of time before boarding.

Experimental Results Our environmental setup requires at least 6 time steps
for all agents to achieve their goals. In the case in which the maximum number
of time steps is 4, only three agents can achieve their goals (Figure 5a). Thus,
some agents learn to give way to other agents even if it means they themselves
won’t achieve their goal. The path followed by the agents is shown in Figure 4

4.3 Case 3 — Priority based on limited resource availability

Problem formulation For this scenario, we consider a case in which agents’
goals are designed to hold different levels of importance. In this scenario, we
design the agents to represent firetrucks which have to fill up their water supply
from a main water tank (Figure 2). However, there is only enough water for 4
firetrucks in the water tank. Priority is assigned based on how large of a fire
each is designed to extinguish and the number of people that could be saved by
reaching each goal. We assign priorities to agents A0, A1, A4, and A5 simulating
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Fig.4: Path followed by the agents. Agents A0, Al, and A5 learn to wait to
maximize the overall number of agents reaching their goal even if they do not.

a scenario in which the agents farthest from their goals have the highest impor-
tance. Without assignment of these priorities the agents Al, A2, and A3 would
achieve their goals quicker as per their distance to the tank and their goal.

Experimental Results As shown on Figure 5b agents A2 and A3 learn to let
the other firetrucks fill up their tanks, as this action maximizes the number of
people who can be saved.

5 Conclusion

In this paper, we consider the problem of fairness in the decision-making process
within the field of reinforcement learning. By integrating approaches that incor-
porate fairness behaviors and investigating the priority of agents in the systems,
this paper maximized the over-all utility across all agents. Our contribution first
administered priorities based on agents’ deference to the hierarchy of the groups’
essential tasks, showing that agents were able to give way to higher-priority agent
tasks. We then administered goal-seeking priorities based on the length of dis-
tance to the goal, after which time agents learned to defer to the goal-seeking of
another, even if they missed their goal. Finally, we administered priorities based
on the agents’ ability to accomplish the goal, with results showing that agents
that would be less capable of accomplishing the goal defer to others who are
more capable.

Our results indicate that fairness is contextually determined in the context
of reinforcement learning. To ensure that agents act fairly, the developer must
integrate reward functions and task completion for each agent in the group. In
other words, each agent must be made aware of the collective goals shared by
their fellow agents and should be rewarded based on their deference to the needs
of the group.
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(a) Priority based on shortest path.  (b) Priority based on limited resource

(The maximum number of steps an availability
agent can take is limited to 4 in this
scenario.)

Fig. 5: Number of steps taken by the agents who reach their goal.
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