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Abstract. Understanding the behavior of coalition formation is of sig-
nificant importance. This paper investigates coalition formation in agent-
based modeling using a genetic algorithm. Agent-based simulations are
utilized to gather data on coalition formation by employing an inverse
generative approach. The study encompasses a wide range of game sizes
and examines various characteristics of coalition formation. Specifically,
it analyzes the average number of coalition suggestions per game size
and the time required to achieve the final coalition structure based on
respective fitness functions. By delving into these aspects, this research
contributes to a deeper understanding of coalition formation dynamics
in agent-based simulation models.

Keywords: Modeling and simulation · Agent-based modeling · Coop-
erative game theory · Machine learning · Genetic algorithm.

1 Introduction

Understanding coalition formation is crucial for enhancing our understanding
of social and behavioral dynamics. Coalition formation helps to better under-
stand the emergence of power structures and collective decision-making processes
within human societies and organizations [1]. Additionally, the study of coalition
formation informs strategies for conflict resolution and cooperation by identify-
ing factors that drive the formation of alliances and comprehending the dynamics
of conflicts [21]. Also, investigating coalition formation sheds light on social influ-
ence and the diffusion of ideas, offering valuable insights into opinion formation,
the emergence of social norms, and the spread of information through social net-
works [9]. This knowledge is instrumental in designing effective communication
campaigns and addressing societal issues.

Various techniques have been employed to gain deeper insights into coalition
formation tendencies and structures [23], and further investigation is needed to
expand our understanding in this area [19]. In particular, the size of the game has
not been sufficiently explored, and to the best of our knowledge, this is the initial
endeavor to investigate the patterns and the connection between game sizes and
the formation of the final coalition structure within the realm of agent-based
modeling. As part of our investigation, our focus has been on comprehending
the relationship between game size and the dynamics of coalition formation. We
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have explored the average number of suggestions and time to reach the final
coalition structures considering different game sizes.

In this paper, we investigate these questions by coalition formation scenar-
ios (referred to as "games") with varying numbers of players/agents and their
resultant solutions. To generate the required data, we employ the Inverse Gen-
erative Social Science (IGSS) approach, which combines a genetic algorithm and
agent-based modeling. Coalition formations are defined using a hedonic game, a
form of cooperative game theory, model. This approach enables us to simulate
realistic agent behaviors by leveraging observed social phenomena. The analysis
presented in this paper extends those given in our previous conference paper [7].
The next section describes the background of this research. Section 3 outlines
the methodology, Section 4 presents the results, and Section 5 concludes the
work.

2 Background

This section provides an overview of studying the impact of coalition sizes on
coalition formation, specifically using Genetic Algorithms (GAs) in Agent-Based
Modeling and Simulation (ABMS). It also briefly covers cooperative game theory
and the foundational agent-based simulation used in the computational experi-
ment.

First, we recognize the significance of studying the impact of game sizes on
coalition formation. Comparing various game sizes within the context of coali-
tion formation holds importance for several compelling reasons. Firstly, it allows
us to understand how the size of a game influences the dynamics of coalition
formation. By examining games with varying numbers of players/agents, we can
identify patterns, trends, and challenges that emerge as the complexity of the
game increases. Secondly, comparing different game sizes helps us assess the
scalability and generalizability of coalition formation strategies. A strategy that
works well in small-scale games may not necessarily be effective or feasible in
larger-scale games. This information is valuable for decision-makers who need
to apply coalition formation techniques in diverse contexts, ranging from small
groups to large organizations or societies. Lastly, comparing different game sizes
provides insights into the trade-offs and challenges associated with coalition for-
mation in complex systems. Larger games typically involve more players and
more intricate interactions, which can lead to increased complexity and coor-
dination difficulties. By exploring how coalition formation dynamics change as
game sizes vary, we can uncover key factors that influence successful coalition
formation and identify strategies that are effective across different scales.

Now, we delve into the essential components employed in conducting the
experimental analysis.

2.1 Inverse Generative Social Science (IGSS)

Inverse Generative Social Science (IGSS) is a methodology introduced by Vu et
al.[26] in 2019, aiming to determine agents’ behaviors in an agent-based sim-
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ulation by matching the simulation outputs with provided real-world datasets.
IGSS employs machine learning techniques to generate mathematical represen-
tations of behaviors within sub-models, with genetic programming being a pop-
ular approach for implementing IGSS [17, 13]. This approach not only provides
theoretical interpretability but also enhances our understanding of human be-
havior [26, 10], and contributes to model explainability, an essential aspect of
modeling complex problems [14, 11, 20].

2.2 Genetic Algorithm (GA)

Genetic Algorithms (GAs) are computational methods inspired by natural selec-
tion, pioneered by John Holland, a key contributor to Agent-Based Modeling and
Simulation (ABMS) [18]. GAs employ stochastic processes to select and mutate
a population of potential solutions represented as chromosomes, composed of or-
dered genes that influence behavior and determine fitness. GAs iterate through
generations, repeatedly evaluating and evolving chromosomes to find the most
optimal solution. While GAs have been applied in ABMS for parameter ex-
ploration, their application in the context of Inverse Generative Social Science
(IGSS) is relatively limited.

2.3 Cooperative Game Theory

Cooperative game theory is a branch of game theory that focuses on the forma-
tion of coalitions among agents [4, 15]. It aims to understand how agents form
groups and allocate their resources within these coalitions. The form of cooper-
ative game theory considered is called hedonic games [3, 15]. Hedonic games are
games where each player (agent) has a preference relation over all the possible
coalitions in which they are a member [5].

Similar to non-cooperative game theory, there are a variety of different so-
lution concepts connected with cooperative game theory [24, 4]. In the research
presented in the paper, only the core is considered (strictly, it is the core parti-
tion for hedonic games [3]). The core partition a stability criteria of a partition
such that no subset of players has an incentive to for a new coalition. For a
given game, the core is not guaranteed to exist; however, in this research, we
only consider games where the core does exist.

Other solution concepts for cooperative game theory (and hedonic games
in particular) for example, Shapley Value, nucleolus, and the Kernel exist [24,
4]. Though we do not explicitly consider these other solution concepts some
are accounted for in our research. For example, the nucleolus is always part of
the core (if it exist) and the kernel; as we are only considering games with a
non-empty core, we are also considering the nucleolus and part of the kernel.

Since a player on their own can be considered in a coalition (known as sin-
gleton coalition) and we only allow players to be a member of a single coalition
at any given time, our games always present a covering disjoint collection of
coalitions; this is known as a coalition structure and is an important aspect of
hedonic games.
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2.4 Agent-based simulation of strategic group formation

The agent-based modeling approach refers to a computational modeling tech-
nique that simulates the behavior and interactions of individual agents within
a given system [12]. This approach allows us to study the emergence of com-
plex phenomena and understand the collective behavior that arises from the
interactions of autonomous agents. In our study, an agent-based simulation of a
strategic coalition formation scenario has been developed, building upon prior
research [6, 25], and its validity has been confirmed through comparisons with
results from human experiments [16].

3 Methodology

The methodology starts with developing the base simulation framework, as out-
lined in [8, 5]. This simulation serves as the foundation for conducting the compu-
tational experiments and analyzing the results. The base simulation describes a
hybrid agent-based model using cooperative game theory. Next, the Inverse Gen-
erative Social Science (IGSS) approach way applied to perform computational
experiments and generate the necessary data. The effectiveness of this approach
has been validated in our previous research discussed in [7]. The overview of the
steps employed to conduct the experiments and generate the data is presented
in Table 1.

Table 1. Process of coalition formation analysis

Overview of coalition formation analysis
1 Define the list of games to be considered;
2 Specify the fitness criteria for evaluating the coalition formations;
3 Utilize a genetic algorithm to conduct simulation runs for multiple games;
4 Perform a batch run for simulation run, for each game;
5 Record the average number of coalition suggestions from each batch run and game;
6 Analyze the average coalition formation suggestions required;

Evaluate the quality of the analysis based on the fitness criteria;
Identify patterns, and trends, that contribute to successful coalition formations.

This process outlines the steps involved, starting from defining the game list
and fitness criteria, followed by executing a genetic algorithm, which is evaluated
using the output of multiple games, each with its own batch runs. The experiment
was run for two different fitness criteria. The first fitness criteria is the number
of coalition suggest required before the a core partition is found within a given
game with fewer suggestions being better. The second is the computational time
required to find a core partition. In both case, an extreme upper limit of 100,000
suggestions was use in case the core partition was not found.
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We use a chromosome that represents the sequence of behaviors agents under-
take in each simulation round, particularly focusing on the coalition suggestions
made by an agent to others. Our genetic representation approach uses variable
length chromosomes (VLC) and non-binary genes [2]. The VLC feature allows for
the chromosome length to mutate. Genes serve as representations of behaviors,
specifically coalition suggestion types made by agents. A coalition suggestion
occurs when a new coalition is proposed to a group of agents. If all the agents
involved perceive the suggested coalition as beneficial, in terms of increasing their
utility, the coalition will form. Each gene within the chromosome corresponds to
a specific type of suggestion.

The coalition suggestions were randomly generated based on suggestion type.
Due to the stochastic nature of the simulations, a single run is insufficient to ac-
curately determine the coalition structure. Therefore, we need to conduct mul-
tiple runs (iterations) to evaluate the outcomes more effectively. This is where
the batch run comes into play. A batch run refers to the execution of multiple
simulation runs in a sequential manner in order to obtain reliable results. This
is repeated for multiple games so the results are not biased by one game. In
our genetic algorithm (GA), we use a fixed population size of 100 individuals,
employing tournament selection, and setting the crossover rate at 80% and the
mutation rate at 3% as established standards in the GA community [22]. Our
analysis covers game sizes from three to nine agents, running the GA for 7,000
generations per game size, resulting in a total of 63 million simulation runs. The
simulation is implemented in JAVA, while the game generator is implemented
using C++.

During each simulation run, our objective is to discover a solution, to the
game; this solution is in the form of a coalition structure, thereby exploring
various coalition formation scenarios and generating a range of potential coalition
structures. In order to assess the effectiveness of each batch run, we require a
metric for evaluation. One possible metric is the mean number of suggestions,
which we call “suggestion mean”, and this measure indicates the average quantity
of suggestions made during a simulation run; which is averaged over the batch
runs. Once we have assessed the suggestion means for each batch run, we proceed
to evaluate these runs across different games. We calculate the average number of
suggestion means for the games, considering the data collected from the batch
runs. This allows us to determine the mean number of suggestions for each
specific game, providing insights into the suggestion patterns and performance
across various gaming scenarios. This metric is referred to as the "suggestion
mean of the mean."

SMM =

∑g
Game=1

∑m

BatchRun=1
CSC

m

g
(1)

Where, SMM is the suggestion mean of mean, and CSC refers to the coali-
tion suggestion count for a given simulation run. In total, 30 different games are
generated to test each chromosome (each game had a non-empty core). These dif-
ferent games are translated into their own simulation. To account for stochastic
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variability, each simulation is run 30 times. The average number of suggestions
made across these 900 simulation runs is calculated, representing the "sugges-
tion mean of mean." This metric provides insights into the average suggestion
behavior for a specific game type. The goal of the analysis is to extract insights
and observations from the collected data and findings.

4 Results

In this section, we present the outcomes of our analysis. Figure 1-a shows as the
game size increases, the suggestions mean of mean tends to increase, indicating
that larger games require more coalition suggestions among agents to reach a
solution. However, an interesting exception is observed at a game size of nine,
where there is a decrease in the suggestions mean of mean. This suggests that
there might be certain complexities or dynamics present in larger games that
affect the agents’ behavior. Moreover, the rate of increment in the suggestions
mean of mean differs across different game size ranges. Specifically, for game sizes
ranging from 3 to 5, the rate of increase is relatively slower compared to the range
of 5 to 8. The blue ribbon in the figure represents the confidence interval (CI)
for the mean estimate of the suggestions. The interval is calculated based on the
mean estimate and its standard deviation, indicating the range within which the
true population mean is estimated to lie with a 95 % confidence level. In Figure 1-
a, the CI is narrow for game sizes 3 to 8, indicating a more precise estimate with
less variability. However, for game size 9, the CI widens, suggesting increased
uncertainty in the estimate. This disparity implies that the impact of game size
on the agents’ coalition suggestions may vary depending on the specific range
or imply exponential growth in SMM with stochastic error variability; further
research is required to determine which is the case.

(a) Fittest chromosome’ suggestion mean
of mean

(b) Population average of suggestion
mean of means

Fig. 1. Comparing variation in suggestion means across different game sizes
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In analyzing the results, we initially anticipated an increasing trend in the
average number of suggestions in the population as the game size increased (1-
b). This expectation was based on the intuition that larger game sizes would
introduce more possibilities to consider, hence requiring a greater number of
suggestions to reach a solution. However, contrary to our initial expectations,
the graph did not exhibit a consistent upward trend. The observed deviations
from our expected trend can be attributed to certain quirks or factors that were
taken into consideration during the analysis. These quirks might include complex
dynamics within larger game sizes; specifically, the influence of specific game
scenarios. Therefore, the unexpected graph pattern can be attributed to quirks,
indicating that the relationship between game size and the number of suggestions
is more intricate than initially assumed. Additionally, the CI exhibits a more
compact range around Game 5 in comparison to the other games, indicating a
higher degree of precision and reduced variability in the estimate.

Fig. 2. Coalition formation time across different game sizes

Next, we conducted a comparison of the average time required for coalition
formation across different game sizes (Figure 2). Interestingly, we observed that
Game 5 exhibited a shorter time to reach the solution compared to games with 3
or 4 agents. Furthermore, Game 9 displayed a slightly shorter time for coalition
formation compared to the game with 8 players. Moreover, when examining the
CI, a subtle distinction emerges between Game 8 and Game 9, with the CI for
Game 8 displaying a slightly wider span, indicating a slight increase in uncer-
tainty for the estimated value. These findings suggest that factors beyond game
size, such as constraints and complexities, significantly influence coalition forma-
tion. Constraints like limited resources and conflicting objectives among agents
can impact formation time. Conflicting player requirements may require more
negotiations and iterations. Game dynamics complexities, such as interdepen-
dencies and diverse preferences, introduce decision-making challenges affecting
the time to establish a stable coalition structure.
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(a) Population average number of sugges-
tions across generations
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(b) Population average time across gener-
ations
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(c) Population suggested mean of mean:
truncated
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(d) Population average number of sugges-
tions: truncated

Fig. 3. Analysis of coalition suggestions across generations

The analysis of suggestion outcomes across generations, based on the ge-
netic algorithm, reveals a consistent trend in coalition suggestions per gener-
ation, showing subtle improved performance as the generations progress. As
anticipated, larger game sizes generally require a greater number of suggestions.
Games with eight players exhibit a higher mean number of suggestions com-
pared to games with nine players. Figure 3-a demonstrates that, initially, game
size eight takes more than 9000 suggestions to reach the core coalition. Similarly,
figure 3-b shows that, at the beginning of the generation, game size three also
takes longer to find the coalition structure. Figures 3-c and figure 3-d present
truncated versions of coalition suggestions across different generations. Both
graphs consistently indicate that game size eight consistently outperforms game
size nine in terms of the number of observed coalition suggestions and the time
taken to form the final coalition structure. Notably, the game with five players
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demonstrates comparable or closely aligned suggestion counts to games with 3
and 4 players across generations in attaining the final coalition structure.

This analysis highlights that the size of the coalition is not the sole deter-
minant in the formation of the final coalition structure. Factors such as limited
number of games, game complexity and other constraints play a significant role
in shaping the coalition formation process. These findings emphasize the impor-
tance of considering multiple factors in coalition formation research.

5 Conclusions

This paper presents an analysis of the coalition formation problem, examin-
ing the influence of game sizes on the trends of coalition formation. The study
utilizes inverse generative social sciences; specifically, genetic algorithm-based
approach; and agent-based modeling and simulation (ABMS) approaches. The
computational experiment conducted reveals that, besides game sizes, other fac-
tors could significantly impact the time and performance of coalition formation,
as indicated by the coalition suggestions and time. The results also indicate
the presence of learning in the genetic algorithm; however, it is suggested that
increasing the number of generations would yield clearer insights. Hence, ad-
ditional extensive computational experiments are required to obtain definitive
findings from this approach. The significance of these findings is that incorpo-
rating coalition formation into ABMS might require a deeper understanding of
the dynamics than initially anticipated.
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