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Abstract. Misleading information can have a lasting effect even after
it has been corrected or factual discrediting information is learned. This
is called the continued influence effect (i.e., CIE) and it can influence
judgment at the individual and group level. The CIE has been addressed
experimentally, but there are few, if any, cognitive models that specify its
mechanisms to make predictions and explain behavior. Here, we discuss
relevant literature and modeling efforts, then propose a novel modeling
framework for investigating the CIE using cognitive models at the indi-
vidual level and agent based modeling at the group level. We demonstrate
the utility of the modeling framework using simulations which show how
the CIE emerges from memory processes and social interactions
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1 Introduction

Misinformation and deception were leveraged to successfully mislead adversaries
in past conflicts [12, 19]. With advances in technology and rise of social media
platforms, the prevalence and spread of misinformation has increased [31]. This
creates opportunities to influence individuals and groups by propagating mis-
information and exploiting cognitive vulnerabilities. Misinformation can greatly
influence decision making and cognition [20], even when the information is later
retracted. The lasting effect of data that has been labeled as misleading is called
the continued influence effect, or CIE [14, 18]. Such effects have been identi-
fied as having a potential influence on beliefs about topics ranging from climate
change [30] to COVID-19 vaccinations [13]. Here, we focus on the CIE, discuss
and demonstrate some relevant modeling techniques, and propose future work
to model the CIE in a more appropriate context.
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1.1 The Continued Influence Effect

Most theoretical accounts of the CIE focus on the influence of normative episodic
memory functioning: Once a piece of information is introduced to long-term
memory (LTM), it cannot be erased; the memory can only be re-activated and
associated with different information (e.g., a newly-formed memory is false or
unreliable) [32]. For information that is later revealed to be false, this can lead
to memory errors via competing memory activations [2, 7], recency effects [5],
or familiarity-based fluency [6, 29]. Retrieval-failure accounts are also useful in
accounting for effects related to the quality of a retraction in the face of mis-
information. For example, Lewandowsky and colleagues [18] postulate that cor-
rections often do not replace the coherence of the mental model constructed
during the presentation of the original information [32, 14]. In many cases, this
provides fewer retrieval pathways to the retraction source compared to the mis-
information, leading to higher rates of retrieval failures [26, 21]. Instead, retrac-
tions require effective negation “tags” [8] to overcome these memory errors and
successfully retrieve the corrected information [15]. However, when there is rela-
tional or causal structure between memories (e.g., a narrative), negation is not
as effective if does not fit in or provide meaningful structure or causality[14].

The CIE is largely a memory phenomenon that interacts with other cognitive
processes, social factors, and affects both individual and group level behavior.
To better understand this interaction, make predictions, and explain behavior,
we leverage the ACT-R cognitive architecture [1]. ACT-R simulates human-
like constraints on performance - such as cognitive bottlenecks - and provides
well-validated mechanisms for memory performance and the interaction between
cognitive processes.

2 Integrated Modeling Approach

ACT-R is a hybrid cognitive architecture with symbolic and sub-symbolic struc-
tures [1]. There are perceptual-motor and memory modules representing systems
of the mind. Perceptual-motor modules enable perception of stimuli, actions like
pressing buttons, and goal directed behavior. The declarative memory module
represents facts as chunks in long term memory and a sub-symbolic component
determines their availability. The procedural module represents knowledge about
how to do things, represented as condition-action rules. The pattern matcher de-
termines if any rule conditions match the current state and if so, the rule may
“fire” and change the state of the model. The behavior of the model is repre-
sented as a series of rule firings and state changes. Next, we describe how ACT-R
declarative memory and affect mechanisms can capture the CIE at the individual
level and introduce an approach to capture the spread of information in groups.

2.1 Individual Level

Instance-based Learning. At the individual level, we use a theory of learn-
ing and decision making motivated by ACT-R called instance-based learning
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(IBL)[9]. IBL describes how people make decisions in dynamic environments and
learn from feedback. According to IBL, an agent encodes each unique experience
or instance as a chunk (i.e., basic declarative memory unit) consisting of three
types of information: 1) Situation is the information available to the agent (e.g.,
cues), 2) decision is the action taken by the agent, and 3) utility is the outcome
of the decision. Utility is usually expressed on an abstract scale, like subjective
utility [25], but could be contextualized (e.g. money or points). When making
a decision, an agent evaluates each possible action by comparing their blended
values. A blended value is a noisy representation of an expected utility where
outcomes are weighted according to their probability of retrieval. Thus, an im-
portant feature of IBL is that decision making is sensitive to memory dynamics
such as memory decay, and the frequency and recency of experienced instances.
Typically, an agent selects an action corresponding to the highest blended value,
but other decision rules could be considered. For instance, if there are no rel-
evant instances, the situation might be judged to be ’atypical’ and a heuristic
(i.e., procedural memory) may be used to determine a response [10].

In IBL, an instance is a chunk comprised of slot-value pairs containing struc-
tured information (i.e., situation, decision, and utility). Each chunk has an acti-
vation value representing its ability to be retrieved and is interpreted as the log
odds that the information is needed in a given situation [1]. As the activation of
a chunk increases, so does the probability and speed of its retrieval. A chunk’s
activation, Ai, is determined by base level activation, Bi, with some added acti-
vation noise, ϵi. The base level term is important for IBL as it describes opposing
dynamics of learning with experience and forgetting across time. It is stated as:

Bi = log

 ni∑
j=1

t−d
ij

 (1)

where ni is the number of times chunk i has been used or retrieved, tij is elapsed
time in seconds since the jth retrieval, and d ∈ [0, 1] is a decay parameter. Ac-
cording to IBL, agents select the option with the highest blended value. A blend-
ing mechanism [17] retrieves a value for slot value k by computing a weighted
average of all possible values weighted by the their probability of retrieval:

bvk =
∑
i∈M

pivik, (2)

where M is the index set over all chunks, vik is the value of slot k in chunk i, pi
is the probability of retrieving chunk i, which is given by the softmax function:

pi =
eAi/τ∑

m∈M eAm/τ
, (3)

where τ controls how sensitive the probability weights are to activation. There-
fore, if a chunk was created with a high base level activation or was used fre-
quently, it would have more influence in blended values and decision making.
This is a natural way to model the CIE within the IBL framework. However, it
does not include emotion and its influence on activation.
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Core Affect and Weighting. Prior research has demonstrated that emotionally-
laden headlines facilitate the spread of misinformation [3]. In its standard form,
IBL provides only a partial account of CIE due to its exclusive focus on cognition.
Recent research inspired by core affect theory [24], laid the initial groundwork for
incorporating affect into cognitive models such as IBL [16]. Core affect focuses
on feelings underlying emotion and includes two dimensions: valuation (positive
or negative) and arousal (magnitude). A module was developed [16] to compute
valuation, Vi and arousal Ari, which are both added to the base level term in the
activation equation. The current valuation of chunk i at the jth use is based on
its previous valuation Vi(j−1) and the difference between the previous valuation
and current reward Ri(j) multiplied by the learning rate for valuations av:

Vi(j) = Vi(j − 1) + av[Ri(j)− Vi(j − 1)]. (4)

Arousal is the absolute magnitude of valuation.Valuations are updated each time
a chunk is referenced within a time window. Arousal and valuation are included
in every activation update and can be used as retrieval cues. The valuation mod-
ule has three buffers: 1) valuation-filter handles targeted retrieval requests, 2)
valuation holds valuation and arousal values for the last retrieved chunk, and 3)
core-affect represents the current affective state of the model by calculating and
storing the weighted sum of valuations (i.e., core-affect-valuation) and arousal
values (i.e., core-affect-arousal) based on all chunks in declarative memory. Val-
uation affects probability of chunk retrieval via activation, and core affect can be
used to reward the model or serve as a proxy for judgments or preferences. For
instance, a chunk with associated negative affect could have greater activation
and carry more weight in a blended value. This effect could persist over time
despite the accumulation of conflicting evidence and impact decision-making. In
previous work [16], we computed the Feeling Of Rightness (FOR), which serves
as a measure of confidence in current knowledge. It is based on the subjective
ease an intuitive answer is generated. The internal reward used in core affect,
when knowledge is updated, could influence the FOR through positive reinforce-
ment. A high FOR may lead to superficial or biased answers, and a low FOR
may led to questioning knowledge and deeper processing.

Production compilation. By modeling how declarative knowledge is compiled
into procedural knowledge rendering memory retrievals no longer necessary, pro-
duction compilation [1] can explain how original mental models are reinforced
and why they are difficult to modify. After compilation, the idea now exists in
a form that cannot be verbally retrieved and modified. As a result, retraction
or correction is not possible. Instead, a new production with a correction or
modification would need to be created to compete with the original.

2.2 Group Level

Information often spreads across a group through direct or social media inter-
actions between individuals. Therefore, it is important to model the social and
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environmental context in which information is disseminated. At the group level,
we use agent based models (ABMs) [4] as a computational framework for model-
ing the spread of (mis)information within social networks. ABMs are flexible and
have been used in a wide variety of fields to model complex systems, including
social psychology, sociology, and economics. In ABMs, autonomous agents—
which could represent cells, individuals, groups, or organizations—are defined
by a set of properties (e.g., personality) and relatively simple rules guiding their
behaviors. Agents interact with each other and the environment across a series of
discrete time steps, causing the state of the system to evolve [28, 4]. Interactions
in ABMs are completely bottom-up based on relatively simple rules specified
at the agent level. In some ABMs, emergent properties not explicitly encoded
in the agents’ rules may arise over a series of interactions [28]. One well-known
example is flocking behavior of birds [23], which is not programmed into agents,
but instead emerges through the interaction of agents following simple rules.

3 Preliminary Modeling Demonstrations

We propose an integrated, multilevel approach to understanding the CIE. IBL
theory provides a powerful, well-validated memory theory capable of express-
ing the memory-based accounts reviewed above. The valuation module provides
mechanisms to account for how emotionally charged content affects memory
activation and extent of cognitive processing. Group level modeling allows the
simulation of this effect over populations of individuals and provides predictions
about the spread of CIE through networks of individuals. Integrating these ap-
proaches enhances the cognitive fidelity and explanatory power of group-level
simulations, allowing agent beliefs and behavior to be guided by memory theory.

3.1 Individual Level Demo

We present a model using IBL without core affect added as an initial demon-
stration of the approach. The model completes a two alternative forced choice
task based on three binary cues [11, 22]. The relationship between the cues and
the correct choice was governed by a probabilistic rule such that when a given
configuration of cues was present, then the correct answer could be known with
a certain probability. This probability was manipulated between subjects (either
80 or 90 percent). In prior studies, we demonstrated this model provided a good
fit to empirical data. Here, we wanted to learn the effect of introducing biasing
information at the outset of the experiment. Specifically, we introduced instances
suggesting the opposite of the correct responses would have strong utility val-
ues. We entered two instances in memory that suggested: 1) if the second cue
was ”2” and a ”yes” response was given, it would have a utility of ”1”, and 2)
responding no in this situation would have a utility of ”-1”. We expected the
bias would initially impair the model’s performance, but eventually recover as
it learned from feedback. In Figure 1, color represents information cost and line
type cue validity. The biased model (right column) started with poorer accuracy
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Fig. 1. Individual level model results showing bias and partial recovery over time.

(top row), but approached performance of the standard model (left column) by
the end. Latency (bottom row) for the biased model was initially faster, as bias
led to less consideration of other information in memory. This simple demon-
stration shows IBL is capable of capturing the phenomenon of the difficulty
of correcting an incorrect belief, even after repeated feedback. Follow-on models
can be built within this framework to reveal insights about timing of information
presentation, in terms of feedback and biasing information.

3.2 Integrated Model Demo

As a proof-of-concept demonstration of CIE using the integrated modeling ap-
proach, we developed an ABM simulation using agents with memory systems
based on IBL. The goals were to understand whether a misinformation correc-
tion intervention could mitigate the CIE and how the timing of the intervention
relates to its effectiveness. In our simulation, 100 agents were placed in random
cells of a 20× 20 grid such that only one agent could occupy a given cell. Each
agent was initialized with a chunk containing two slots—one slot, which unbe-
knownst to the agents, contained either factual information or misinformation,
and another slot which contained the source of the information (i.e., agent ID).
Each agent had a 10% chance of starting with misinformation and a 90% chance
of starting with factual information. At each time step, agents communicated
with their neighbors located horizontally, vertically, or diagonally in adjacent
cells (i.e., separated by a Chebyshev distance of 1). Communication between
agents proceeded in two steps: first, the communicating agent retrieved the most
active chunk, and second, the receiving agent encoded a new chunk containing
the (mis)information along with its source. After all agents have communicated,
we computed a blended value for each agent according to an adaption of Equa-
tion 2 for categorical values, and summed the number of agents whose blended
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value represented misinformation. The resulting value served as a measure of
the impact of misinformation within the group of agents. We repeated the steps
above 100 times, which constituted a single run of the model.
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Fig. 2. A demonstration of the CIE at the group-level. Presenting correct information
at different time points does not reduce the effect of misinformation.

We devised a simple intervention in an attempt to mitigate the CIE. At one
point during the simulation, each agent received corrective information with a 1

3
probability. If an agent received the corrective information, it was encoded into
memory and potentially communicated to neighboring agents. In each condition,
the intervention was introduced at the beginning of one of four time steps: 5, 25,
50, or not at all. We assigned each agent the default value for decay of d = 0.50
and σ = 0.20. We set the the retrieval threshold to −10 under the simplifying
assumption that retrieval failures are rare. Following the approach used in [9],
we used time step (trial) as the unit of time in base-level learning. We ran the
model 500 times in each condition and plotted the average values across time
steps in Figure 2. The model showed clear evidence of a CIE: misinformation was
largely resistant to efforts to correct misinformation. Further inspection of the
model revealed that the CIE occured because activation for memories formed
early was high and thus attenuated the contribution of subsequent corrections.
This result is consistent with prior research showing that corrective information
does not overwrite incorrect memories, but instead competes with it [27].

4 Discussion

Developing a comprehensive account of the CIE requires an integrated model-
ing approach spanning cognition at the individual level and social interactions
at the group level. To meet this challenge, we proposed an integrated modeling
framework which uses ABM to model social interactions and IBL to develop cog-
nitively plausible agents. One benefit of using IBL at the individual level is that
it describes cognitive and emotional processes underlying decision making. ABM
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complements IBL by providing a framework for modeling social interactions and
the spread of (mis)information through social networks.

In line with previous research, our individual level demonstration illustrated
that the CIE occurs because corrective information competes with, rather than
overwrites, well-established memories. Eliminating the CIE required multiple
exposures to corrective information, suggesting effective mitigation may require
sustained mitigation over a period of time. Our integrated modeling demon-
stration illustrated two important points: (1) how the CIE can emerge through
a combination of memory mechanisms at the individual level and social inter-
actions at the group level, and (2) how the CIE is largely resistant to inter-
ventions designed to present corrective information. Results indicated a small
”dose” of corrective information is not sufficient, regardless of timing, suggest-
ing ”inoculation” or maintenance doses might be more effective. In the broader
social context, mitigating the CIE can be even more challenging. Information ex-
changed through social interactions tends to be bidirectional and thus mutually
self-reinforcing. One implication that could be investigated in future research, is
that an effective intervention should target social networks, instead of individu-
als, and leverage the same information channels and dynamics which facilitated
the initial spread of misinformation. The individual demo suggests this interven-
tion should also be multi-dosed and sustained.

4.1 Limitations and Future Work

We plan to refine the proposed integrated modeling approach. For the individual
level demonstration, we used an IBL model that was originally developed for a
different context. In addition, we discussed core affect mechanisms, but have not
yet added to the model. In future work, we plan to: 1) develop a more com-
prehensive IBL model, 2) include the valuation model to add affective influence
on chunk activation and extant of cognitive processing, 3) explore the interplay
with declarative and procedural memory, and 4) do some experimental work to
better understand cognitive mechanisms underlying the CIE and inform model
mechanisms.

The preliminary demonstration for the group level model included basic
declarative memory components and each agent only started with one piece of
information. The ABM framework provides a solid foundation to model the CIE
at the group level and the demonstration suggests it can be scaled in complexity.
In future work, we plan to add additional memory components from the indi-
vidual level model, more pieces of information, and additional dynamics within
the group. For instance, agents within the group could have different amounts
of information that may or may not be emotionally charged, or have different
degrees of influence on other agents to simulate social status or trustworthiness.
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