
Modeling Multiple Strategies and Learning in a Complex 
Fault-Finding Task 

Shan N. Wang and Frank E. Ritter 

Penn State University, State College PA 16801, USA 

Abstract. Previous work has modeled strategies in a simple fault-finding task. 
We present multiple models of strategies that people apply to find faults in a 
complex circuit, with and without learning. We continued modeling multiple 
strategies for tasks with higher complexity. The multiple strategies are imple-
mented in Python with a novel approach that uses hierarchical task analysis, the 
Keystroke-Level Model (KLM), and the power law, to predict performance time. 
To evaluate those models, we used human data from a large study (Ritter et. al, 
2022). We model the test session data when participants had more time to learn 
and develop their strategies. We developed four strategies by analyzing the top 6 
participants who had 100% correct rate in the test session. We then compared the 
human performance time and the prediction time by our strategy models, with 
and without learning. The strategies can predict 62% of the participants. We pro-
vide insights into why we sometimes failed to predict performances well, such as 
not modeling errors nor strategy switches. 
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1 Introduction 

It is possible to construct a learning model that can capture individual differences in 
strategies as these strategies develop. We can find predictable sources of variability in 
learning across time and across learners. Modeling human behavior using different 
strategies and comparing them with the time course of individual learning behavior 
remains difficult and rare, but not impossible. A model that learns helps describe how 
humans use knowledge to solve problems and how the repetitive application of the 
same knowledge leads to faster performance. A good overview of the categories of 
human learning is provided by [2]. These models have had their predictions compared 
to averaged data but have not had their predictions compared to individual learners. A 
problem in the study of complex problem solving, especially in a learning context, is 
the spectrum of individual differences. Understanding individual differences can help 
understand the acquisition and application of complex skills. Averaging over strategies 
will distort results and hide important and reliable effects [7,19]. Models of individual 
differences have been built by previous researchers in various ways, such as differences 
in global system parameters [4,5,9], differences in knowledge [1,3,10], and in how dif-
ferences arise through learning[12,18,19].  
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Thus, previous work has argued for the need and the usefulness of representing strat-
egies [15,17,20]. These models have shown that individual differences in problem solv-
ing arise in multiple tasks, and that modeling individual strategies can lead to a better 
understanding of how the task is performed and how learning strategies arise [6,21].  
Friedrich and Ritter [8] also presented the case that strategies are important for under-
standing behavior, and that learning is important as a component to shift between and 
to evolve strategies. They pointed out that little research had been done on modeling 
different strategies for a task, because to do so, tasks need to be complex enough to 
allow multiple strategies, and individual behavior must be traced and analyzed, and 
multiple strategies must be modelled. To extend this line of work, we report how we 
modeled multiple strategies while they were being learned, how they matched partici-
pants’ performance (some fairly well), and how they inform us about behavior, transfer, 
and learning.  

We have presented a small start of this work, one strategy, as a poster in ICCM [22], 
this paper has four strategies with more details and analysis.   
1.1 The MENDS Task 

We used a complex electrical troubleshooting task to study problem solving, with a 
much more complex system, the BenFranklin Radar System that has five times more 
components. Figure 1 shows the BenFranklin Radar system schematic. It has 36 com-
ponents, including a power supply that does not break: five times as many components 
as the Klingon Laser Bank task.  

 
Fig. 1. The Schematic for the BenFranklin Radar. Blue lines are power; red lines are signal; 
purple lines are both. 

MENDS, in Figure 2, is a simulator created by Charles River Analytics for the Ben-
Franklin Radar system, used under license. In MENDS, participants can click and open 
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the subsystem (trays) to see the components in each subsystem. Based on their sche-
matic knowledge, the light and switch conditions, participants can decide and click the 
component that they think is the broken component. Components without power are in 
grey.  
 

  
Fig. 2. The MENDS simulator’s front panel and one subsystem. 

1.2 Human Performance Data 

We collected participants’ mouse moves for our modeling and data analysis using the 
RUI logger [11,13]. To gather data, a user study was run [14]. The goal (in addition to 
studying learning and retention on a complex task) was to identify strategies with a 
larger number of participants. In the larger study, sessions 1, 2 and 4 are practice ses-
sions; Session 5 is the test session. We used data from the test session when participants 
tend to have developed their strategies. After data cleaning, we had 111 participants’ 
data in the test session. Participants have 5 minutes in Session 1 to practice MENDS 
and are asked to finish 20 problems in the test session. The number of finished tasks 
varied, because not all participants finished 20 problems in the test session.  

We collected the component and times the participants clicked on. From the mouse 
clicks of the top 6 participants in the test session, we developed and implemented four 
strategies in the BenFranklin Radar task. The observed time for participants’ perfor-
mance was compared with the predicted time of our strategy models, without and with 
learning.  

In the remainder of the paper, we present how we modeled the MENDS task, fol-
lowed with the descriptions of the current four strategies (the grey upstream strategy as 
an example of the technical details) and comparison among strategies. Further, we pre-
sent a comparison of human performance and model predictions without and with learn-
ing.  Finally, we present an example participant’s match to show how well our strategy 
model predicts their time. (Participant IDs ran from 100-500 and represented different 
running sessions). 

2 Modeling the Task and Strategies 

We present a flowchart, Figure 3, to show how we built a simple task model for 
MENDS in Python [16].  The simple task model used Panda data frame to store and 
reflect components’ broken status (1: component is fine; 0: broken), light status (1: 
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component has light on; 0: light off), downstream components to give power, upstream 
components to receive power, switch condition before them (1: switch on; 2: switch 
off), the number of times the required schematic knowledge have applied by partici-
pants. 

 
Fig. 3. A flowchart for the simple task model and the grey-upstream strategy model. An active 
path refers to the components receiving power and that are supposed to have lights on.  

By analyzing mouse moves of participants who had 100% correct rate in the test 
session, we came up with four strategies that may be used to identify the broken com-
ponent. Here we define the strategy in the scope of a task. Those strategies are catego-
rized by four features: their starting point, how the front panel information was used, 
degree of schematic knowledge used, and degree of interface information used. Varia-
tions within one strategy are also possible. All strategies find the correct fault.  
2.1 The Grey Upstream Strategy 

The grey upstream strategy (GreyUp), shown in Figure 4, is based on participants PID 
324, 420, 451, 453. The strategy involves two major steps, finding a grey component 
as a starting point and tracing upstream in the schematic till finding the broken compo-
nent. To locate the starting point, users click into the first grey tray using light infor-
mation from the front panel and identify the first grey component by interface order 
from left to right and up to down within the clicked tray. Starting from the first grey 
component, participants use their schematic knowledge to trace up until they identify 
the broken component, which is the only one with its light off but all its upstream com-
ponents in the active path are with their lights on. 
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Fig. 4. Flowchart of the Grey Upstream strategy.  

2.2 The One-by-One First Grey Strategy 

The one-by-one first grey strategy (OByO) was developed based on PID 448. The strat-
egy walks through trays one by one and stops and clicks the component when the first 
grey component in the active path is found. This strategy ignores front panel infor-
mation and uses only interface information. 
2.3 The All-Trays Strategy 

The all-trays strategy (AllTrays) was developed based on PID 347. The strategy walks 
across all trays while deciding the fault, then directly goes to a certain tray to locate the 
broken component.  Components were assigned a number based on their distance from 
the power supply. The smaller the number, the closer the component to the power sup-
ply. The one that has the smallest number among the grey components is the broken 
one. This strategy ignores front panel information and uses both schematic knowledge 
and interface information. 
2.4 The Smaller Lights Strategy 

The smaller lights strategy (SLights) was developed based on PID 396. The strategy 
uses smaller indicator lights on the front panel to decide the first tray to go; components 
are grouped by smaller indicator lights. By the combination of indicator lights on the 
front panel, participants know which tray the broken component is in, then directly go 
to that tray to click it. This strategy uses smaller indicator lights on front panel and uses 
both schematic knowledge and interface information. This strategy requires better and 
higher-level use of schematic knowledge. 
2.5 How the Models Predict Time and Learn 

The models take steps to solve the task based on each strategy, and time is added with 
each type of action. The time for each step depends on the learning level. The times 
added with no learning condition are shown in Table 1. Under the learning condition, 
we assume that knowledge is transferred to later tasks and the participants solve the 
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later tasks faster based on the repetitive application of the same knowledge. Time pa-
rameters used in the models include visual encoding, 0.4 (s); mouse move, 1.1; mouse 
click, 0.2; mental operation, 1.35; learning rate, 0.4.   
      Models learn by modifying the mental operation time. We do this by having mental 
operation time as a function and not a constant. The function mental(type, var2) gives 
different times for different types of mental operation and learning levels. The type 
variable includes type 1 and type 0. Type 1 refers to the mental operation time retrieving 
a component by using schematic knowledge. Type 0 refers to any other mental pro-
cessing not related to schematic knowledge. Type 1, retrieving a component, can be 
faster with learnings which indicated by var2. For type 0, var2 is a random number 
because the time is assumed to be fixed, and no learning happens. For situations that 
assume no learning happens, the mental operation function in models uses constant 1.35 
s. For situations that assume learning happens, the mental operation function in models 
uses the following formula:   

 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛	𝑇𝑖𝑚𝑒	 = 1.35 · 	𝑛!"	                    (1) 

Where n is the number of times the component has been checked or the number of times 
the required knowledge of circuit has being used. The value of l represents the learning 
rate, 0.4. 
2.6 Comparison among the Four Strategies 

Those four strategies have different starting points and use different degrees of sche-
matic knowledge and interface information. They take different times to finish the same 
task. Figure 5 shows the models’ predicted times on the 35 faults as if they solved each 
for the first time (without learning). The figure shows that the strategies are different, 
and that their task times also vary by different tasks.  

  
Fig. 5. Strategy predictions for the 35 faults without learning across problems. The x-axis lists 
all the 35 faults (not in completion order of any session).  

Figure 6 shows the predictions of the strategies for the 20 problems without learning in 
the test session, showing again that the strategies are different: they predict different 
time for the same task; one strategy also predicts different times on different tasks.  
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Fig. 6. Strategy predictions for the 20 problems without learning in the test session. The x-axis 
shows the same order of the 20 tasks in the test session.  

3 Comparing Human Performance and Model Predictions 

We next discuss the results of the comparison between the strategies and participants, 
without and with learning. The developed strategies were compared to the human per-
formance data in the test session, with no learning and learning. The models were used 
to solve tasks in the test session. We trained the models with the previous sessions that 
participants experienced before we run the models for tasks in the test session under 
learning. The predicted times are then compared to the observed times of the partici-
pants. We consider that participants fit well to a strategy if they have R2 with a p-value 
< .05. 
3.1 Without Learning VS With Learning 

14 participants’ behaviors match a strategy (p < .05; R2 varied) without learning in the 
test session. 69 participants’ behaviors match a strategy with learning in the test session. 
Table 2 shows only part of the data, under the no learning condition, as an example. 
Table 3 shows only part of the data, under the learning condition, as an example. We 
caught some the strategies participants used, such as the grey upstream strategy 
(GreyUp) and all trays strategy (AllTrays). The one-by-one strategy (OByO) and the 
smaller light strategy (SLight) did not match well. Negative correlations are shown as 
0’s in the table for clarity.  

Table 2. Without learning. Example well-fit participants, the four strategies, and their corre-
sponding R2. Those with p-value < .05 have a * attached. 

PID AllTrays GreyUp OByO SLight 
378 .322* 0 .024 .026 
387 .067 .315* 0 0 
404 .021 .233* 0 0 
413 0 .492* 0 0 
429 0 .342* 0 0 
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Table 3. With learning. Example well-fit participants, the four strategies, and their correspond-
ing R2. Those with p-value < .05 have a * attached. 

PID AllTrays GreyUp OByO SLight 
361 .763* .082 0 0 
407 .737* .012 .033 .019 
350 .594* .095 .055 .012 
355 .577* .062 0 0 
352 .572* .078 .004 .017 

 
3.2 An Example: PID 413 

Figure 7 shows the match of PID 413 as an example.  PID 413 has R2 of .498, without 
learning and an R2 of .518, with learning for the gray upstream strategy. The red dotted 
line is the observed time from human data; the blue solid line is the predicted time 
without learning; the black solid line is predicted time with learning and was trained 
with previous sessions’ faults.  

                               
Fig. 7. An example of PID 413. A comparison of human data, our Grey Up-stream Strategy 
model with learning, and the Grey Up-stream Strategy without learning.  

4 Discussion and Conclusion 

We modeled four strategies in problem solving and in different learning conditions. We 
hope to urge an awareness of understanding diversity of behavior. Different strategies 
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have different starting points, different ways of using schematic knowledge, and inter-
face information. They took different times, and all found the correct solution. With the 
assumption of only one standard strategy, we may mistakenly regard many of the par-
ticipants as being misbehaved when they apply a different strategy. In a worse case, we 
may interrupt them at the wrong time, believing that we are correcting and helping 
them.  

One should indeed be careful averaging behaviors. Participants use different strate-
gies within this task. Averaging over strategies will distort results and hide important 
information. We identified and used four strategies for the complex fault-finding task 
to predict human performance. More than four strategies exist, because some negative 
correlations are also significant. Further exploration may come up with some counter-
intuitive strategies. We also have built a fifth strategy called random-start strategy. This 
strategy needs further development to run all the possible starting points to calculate 
correlations of prediction time and human performance time.  

The current strategy models we have are from the top 6 well-performed participants. 
The rest of the participants made much more errors during the fault-finding process. If 
our strategy models consider errors, the match of participants and strategies may in-
crease. We have built a simple error model and indeed got higher R2 [23]. More and 
complicated error models are worth further explored. Moreover, currently, we assume 
that participants were using the same strategy across a session, but some participants 
may have applied various strategies within one session for different tasks. We also as-
sume that they apply the strategy perfectly without variation. It requires them to have 
necessary working memory and schematic knowledge to help them finish all the steps 
of a strategy. In this case, we have not modeled errors, or lapses, or changes of strategies 
within the same session. Modeling those can be our future steps.  
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