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Abstract. Opioid overdoses continue to worsen in the United States,
with rapid increases in overdose deaths involving heroin. This crisis, rec-
ognized as “opioid epidemic”, has widespread consequences across every
region and every demographic group. To enhance the overdose surveil-
lance and to identify the areas in need of prevention effort, in this work,
we explore the forecasting capability of heroin overdose occurrences us-
ing real-time crime data. Prior works suggested different types of links
between the overdose occurrences and criminal activities, such as finan-
cial motives and common causes. Grounded on these observations, we
present a model that utilizes the spatiotemporal structure of the crime
incidents to forecast future heroin overdose occurrences. Results show
that, our method achieves better performance, with significantly lower
errors (in terms of RMSE and MAE) compared with the baseline method.
Our method also allows for meaningful interpretation from both spatial
and temporal aspects, including identifying predictive hotspots, local and
global contributions, and informative features.
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1 Introduction

Opioid use disorders (OUD) and overdose rates in the United States have in-
creased at an alarming rate since the past decade [22]. Overdose deaths involving
prescription opioids have been continuously rising since the 1990s; heroin over-
dose deaths have sharply increased since 2010 [19, 4]. The age-adjusted rate for
drug poisoning deaths involving heroin nearly quadrupled between 2000 and
2013 [10], and deaths from drug overdose are now the top cause of injury-related
death in the United States [3]. The rate of growth of OUD and overdose, com-
bined with the number of impacted individuals in the United States, has led
many to classify this as an “opioid epidemic” [13].

Detailed assessments of OUD and overdose growth associated with popula-
tion subgroups and spatial patterns of spread require consistently collected and
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geographically well-resolved space-time data [8, 7]. In the United States there
is no systematic monitoring of drug abuse and dependence at either a regional
or state level. The only existing estimates of incidence and prevalence rates are
meant to represent the entire country (e.g., NSDUH) or are limited to a small
number of communities [8]. One such database is City of Cincinnati opioid over-
dose dataset, which contains the daily opioid overdose incidents with location
information. In this work, we utilize this dataset to explore the links between
opioid overdoses and other social phenomena.

Highlighting the links between various social phenomena and opioid use has
drawn significant attention. Among them, a number of studies have identified
a relationship between the opioid use and crime. Bennett et al. stated that the
people dependent on heroin or other types of opiates are disproportionately in-
volved in criminal activities [1] in particular for crimes committed for financial
gain [17]. Furthermore, Hammersley et al. [9] suggested that opportunities for
drug use increase with involvement in criminal behavior. Seddon et al. [21] in-
dicated that crime and drug use share common set of causes and they co-occur
together due to this set of causes. Furthermore, routine activity theory requires
a suitable target, a likely offender and the absence of capable guardian for crime
to occur. Since likely offenders can reach suitable targets in different locations
easily, the locations of drug-related arrests and opioid overdose incidents may
not be in the same location but exhibit spatial lag effects. Given the relation-
ship between the crime and opioid use, in this study, we aim to explore the
forecasting capability of heroin overdose occurrences using real-time crime data.
More specifically, we model the spatiotemporal patterns of the crime incidents
to forecast future heroin overdose occurrences.

There have been machine learning techniques that employed temporal, spa-
tial and spatiotemporal dependencies for event forecasting. Most of these works
focused on predicting event occurrences instead of volume/count from digital
traces. Among them, several studies utilized logistic regression (LR) to de-
tect/forecast events using social media data relevant to crime [6], civil unrest
[14], and anomalies [16]. Ramakrishnan et al. [18] proposed a framework to
forecast civil unrest events from a variety of data sources employing LR with
LASSO. Moreover, Ning et al. [15] suggested a protest forecasting approach from
articles based on multiple instance learning. It jointly predicted events and iden-
tified event precursors. Zhao et al. proposed spatiotemporal event forecasting
using modified Hidden Markov Model [23] and multi-task learning [24, 25]. Fur-
thermore, Zhao et al. [26] presented an approach capable of distant-supervision
of heterogeneous multi-task learning for multi-lingual spatial event forecasting.
However, a great majority of these studies primarily considered forecasting per-
formance instead of interpretation of the events over time and across space.
Also, the interactions between spatial and temporal dimensions were mostly
overlooked. In this work, we present a model that employs the spatiotempo-
ral structure of the crime incidents to forecast future heroin overdose occur-
rences. Our method also allows for meaningful interpretation from both spatial



Forecasting Heroin Overdose Occurrences from Crime Incidents 3

LSTM LSTM... ...

Spatial Attention Layer

Master Attention Layer

Dense LSTM LSTM... LSTM LSTM...

Spatial comp.Temporal comp.Static comp.

Fig. 1: Architecture. It mainly consists of three components namely static, tem-
poral and spatial.

and temporal aspects, including identifying predictive hotspots, local and global
contributions, and informative features.

2 Method

2.1 Problem Definition

Suppose that there exist L locations (e.g., neighborhoods, cities) and each lo-
cation l can be represented by a combination of dynamic and static features.
Let Xt−k+1:t = {Xt−k+1:t,l, l = 1, 2, . . . , L} denotes the historical collection of
dynamic features from all locations within a time window with size k up to
time t, where Xt,l is set of the aggregated dynamic features (e.g. number of
crime incidents) at time t (e.g. week, month) and location l. Furthermore, let
S = {Sl, l = 1, 2, . . . , L} be the collection of the static features (e.g. population
of a location, median household income) which either remain the same or change
is visible in a long period of time. Moreover, Yt∗,l ∈ N denotes the number of
heroin overdoses occurred at a future time t∗ and location l.

Our purpose is to forecast Yt∗,l – the number of heroin overdose occurrences at
the future time t∗ and location l where the time difference between t∗ and t is the
lead time for forecasting – from the static and dynamic features (historical crime
activities) obtained from location l with the dynamic features from all other
locations. As a result, the forecasting problem can be formulated as learning the
mapping function f(Sd,Xt−k+1:t) → Yt∗,d from the static and dynamic features,
to the number of heroin overdose occurrences at the time t∗ for a target location
d.

2.2 Model

Our model consists of three main components namely static component, tem-
poral component and spatial component, as shown in Fig 1. Static component
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encodes the static features of the target location d with a fully connected layer.
The output of static component is hstd . On the other hand, temporal and spatial
components are designed to capture local and global crime dynamics using Long
Short Term Memory (LSTM) [11] as building blocks. While the former models
the local dynamic features, the latter models the spatiotemporal contribution of
dynamic features of all locations. For the temporal component, we use a single
LSTM network. On the other hand, the spatial component includes separate
LSTM networks for each location to model its temporal dynamics. The LSTM
outputs inside temporal and spatial components are htemd and {hsp1 , h

sp
2 , . . . , h

sp
L },

respectively.

We extend the two-level attention mechanism first introduced in [5]. The key
idea is to identify predictive hotspots and differentiate the contribution of static
and dynamic features on forecasting heroin overdoses. The first attention layer,
namely spatial attention layer, is located in the spatial component and on top
of {hsp1 , h

sp
2 , . . . , h

sp
L }. Its purpose is to highlight the locations that have more

contribution on forecasting heroin overdoses in the target location. Therefore,
this attention layer identifies the predictive hotspots. νsp is the output of spatial
attention layer which summarizes the information from of all locations. Second,
we present master attention layer on top of the outputs of three components,
which are hstd , htemd and νsp. The purpose of master attention is to differentiate
the contributions of static, local dynamic and global dynamic features. For in-
stance, while static features are more predictive in some locations, the local or
global crime dynamics are more informative in another regions. Therefore, this
attention adjusts and summarizes the contributions of different components in
its output νm. Then, a hidden layer with ReLU activation function is applied to
forecast the number of heroin overdose occurrences as Ŷt∗,d in the target location
d at the future time t∗.

For the training of the network, we use the mean squared error as the loss
function. We also employ Group Lasso regularization to select informative fea-
tures inspired from [20]. Each input neuron in the all components of the model
is considered as a separate group.

2.3 Features

We utilize two types of features namely static features and dynamic features.
Static features are obtained from census data of City of Cincinnati and they
include demographics and economic status about the neighborhoods. These fea-
tures change slowly over time. Among the demographics features, for each neigh-
borhood we extract population, distribution of genders and distribution of races
(White alone, Black or African American alone, American Indian and Alaska
Native alone, Asian alone, Native Hawaiian and Other Pacific Islander alone,
Two or More Races). Furthermore, we employ median household income, per
capita income and poverty as the static features showing the economic status of
the neighborhoods. As a result, we obtain a total of 12 static features. Note that,
we normalize the gender, race related features and poverty by dividing them to
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total population of corresponding neighborhoods. We also apply z-score normal-
ization for median household income and per capita income, and log transform
for population before training our architecture.
Dynamic features are to capture the crime dynamics of the City of Cincin-
nati that may be predictive for heroin overdose occurrences. We obtain dynamic
features from crime incidents dataset. It includes crime incidents with a unique
crime incident number. Each crime incident may contain one or more Uniform
Crime Reporting (UCR) types (high-level offense). The available UCR types
in the dataset are Part 2 Minor, Theft, Burglary/Breaking Entering, Robbery,
Aggravated Assaults, Rape and Unauthorized Use. For each neighborhood and
each time unit, we aggregate total number of unique incidents, total number
of incidents of all UCR types and total number of incidents for each of eight
individual UCR types aforementioned above. As a result, we obtain a total of 9
dynamic features for each neighborhood for a given time unit. Note that, for a
given neighborhood we first normalize total number of incidents of each individ-
ual UCR type by dividing it to the total number of incidents of all UCR types.
Then, we apply z-score normalization to total number of unique incidents and
total number of incidents of all UCR types before training the architecture.

3 Experiments

3.1 Dataset

We employ three datasets namely Heroin Overdoses1, Police Data Initiative
(PDI) Crime Incidents2 and 2010 US Census Data for City of Cincinnati3. The
first one is used to form ground-truth labels (heroin overdose occurrences) while
the second one is processed to generate dynamic predictors. The incidents be-
tween Aug 2015 and May 2018 (included) are considered in these two datasets.
The retrieval date for both datasets is June 1st, 2018. Moreover, census data of
the City of Cincinnati is also considered as the static predictors which change
slowly over time and may provide significant information on forecasting future
heroin overdose occurrences.

3.2 Settings

We used ‘month’ as the time unit and ‘neighborhood’ in City of Cincinnati as
the location unit. The data (both heroin overdose and crime incidents) spanning
the first two years was used as the training set. The data of next 3 months was
used for validation and the last 5 months was used as test set. The hidden unit
size for LSTM units in the model is 16. The window size is set to be {1, 2, 3}
and the lead time is set to be {1, 2}. Also, the model is trained with mini-batch
stochastic gradient descent (SGD).

1https://insights.cincinnati-oh.gov/stories/s/Heroin/dm3s-ep3u/
2https://data.cincinnati-oh.gov/Safer-Streets/PDI-Police-Data-Initiative-Crime-

Incidents/k59e-2pvf
3https://www.cincinnati-oh.gov/planning/reports-data/census-demographics/
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Table 1: Forecasting results

RMSE MAE Pearson Spearman’s Rank

Baseline 2.954 2.003 0.701∗ 0.691∗

Our model 2.672 1.473 0.715∗ 0.722∗

* p < 0.001

4 Results

4.1 Performance Comparison

To evaluate our model, we compare it with a baseline linear regression model in
which static features and dynamic features are concatenated to predict the num-
ber of heroin overdose occurrences. For the quantitative evaluation, we use root
mean squared error (RMSE), mean absolute error (MAE), Pearson and Spear-
mans rank correlation. As given in Table 1, our model achieves lower RMSE
(2.672) and lower MAE (1.473) compared to baseline (2.954 and 2.003). Fur-
thermore, the values of Pearson and Spearmans rank correlation are 0.715 &
0.722 for our method and 0.701 & 0.691 for the baseline, respectively. The cor-
relation results for our method are also superior to the results of the baseline.
Note that, correlation values for both models are statistically significant.

4.2 Analysis of Features

Since we incorporate Group Lasso regularization into our model, we expect our
model to select informative features for forecasting heroin overdoses. Within the
scope of this study, we analyze the static feature weights and local dynamic
feature weights to see which features are more informative on forecasting heroin
overdose occurrences. Fig. 2 shows the mean absolute values of corresponding fea-
ture weights. According to the results, Asian and Hispanic population are found
as important demographic predictors on forecasting future heroin overdoses in a

(a) Static feature weights (b) Local dynamic feature weights

Fig. 2: Importance of static and local dynamic features
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neighborhood. Furthermore, Boardman et al. [2] states that a lack of economic
resources may create communities with greater vulnerability to substance use.
Moreover, communities with a higher concentration of economic stressors (e.g.,
low median income) may be particularly vulnerable to abuse of opioids as a
way to manage chronic stress and anxiety and mood disorders [12]. Our findings
are consistent with the literature and our model identifies poverty and median
household income as important economical features as shown in Fig. 2.

Theories of the drugs - crime connection predict that certain kinds of offenses,
such as shoplifting, theft, robbery, burglary and prostitution are more likely than
others to be associated with drug use and they might be committed to raise
funds to purchase drugs [1]. Consistent to this statement, we observe that the
proportion of the total number of certain crime groups, namely ‘Part 2 Minor’,
‘Theft’ and ‘Burglary/Breaking Entering’, are found to be more informative by
our model compared to the other crime groups such as ‘Aggravated Assaults’
and ‘Rape’. The total number of unique crime incidents and incidents of all UCR
types in a neighborhood are also crucial for the prediction.

4.3 Identification of Predictive Hotspots

Our model provides interpretability while forecasting the heroin overdose oc-
currences in a specific neighborhood in terms of two aspects. First, our model
allows us to discover the predictive hotspot neighborhoods. Second, it enables
us to examine the contribution of local and global crime dynamics, and static
features on forecasting future heroin overdose occurrences. To analyze the pre-
dictive hotspots, we examine the weights of spatial attention and plot these
hotspots in Fig. 3 based on their attention weights. According to the figure,
there are a few neighborhoods whose crime dynamics have global contribution
on forecasting heroin overdoses in other neighborhoods. While East Price Hill
(13) and Westwood (49) are the globally most predictive ones, West Price Hill
(48) and Walnut Hills (46) have little contribution on forecasting.

Furthermore, to analyze contribution of local and global crime dynamics, and
static features on forecasting overdoses, we analyze the weights of the master
attention on a randomly selected neighborhood namely Downtown (11) in a
specific time unit (May 2018). We observe that, while the contribution of local
and global crime dynamics are 0.449 and 0.226, respectively, and static features
contribute 0.325. In other words, the most predictive information stems from the
local crime dynamics of Downtown itself. On the other hand, predictive hotspots
has less contribution.

In addition to predictive hotspots analysis on whole data, we further decom-
pose the heroin overdoses and crime incidents datasets into two equal parts,
spanning the time intervals (Aug 2015 - Dec 2016) and (Jan 2017 - May 2018),
to observe whether there exists a change in predictive hotspots based on the
time interval. We train separate models (85% training set and 15% test set) for
each time interval using our architecture. Fig. 4 indicates the predictive hotspots
discovered with the analysis of spatial attention weights of two models. We ob-
serve that East Price Hill (13), Westwood (49) and West Price Hill (48) are
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Fig. 3: Predictive hotspot neighborhoods. The neighborhoods with darker red
color have more global contribution on forecasting heroin overdose occurrences
on the other neighborhoods. East Price Hill (13) and Westwood (49) are the
globally most contributing neighborhoods. West Price Hill (48) and Walnut Hills
(46) have also little contribution on forecasting.

the common predictive hotspots for both time intervals. They are the neigh-
borhoods where the number of crime incidents are the highest among all the
neighborhoods. Remember that they are also predictive hotspots discovered by
the model trained using whole dataset. Furthermore, Avondale (1) and Walnut
Hills (46) seem predictive hotspots before 2017 and they disappear after 2017.
When we compare the number of crime incidents in both neighborhoods before
and after 2017, we see a decrease in the number of incidents after 2017. More-
over, Corryville (9) has a considerable contribution to forecast heroin overdoses
globally after 2017. There is a significant increase in the number of crime inci-
dents in this neighborhood after 2017. Accordingly, we can infer that immediate
changes in the number of crime incidents in a neighborhood can be an indicator
for being a predictive hotspot.

5 Discussion and Future work

In this work, we present a model that employs the spatiotemporal structure
of the crime incidents to forecast future heroin overdose occurrences. Results
indicate that, our method achieves better performance, with significantly lower
errors (in terms of RMSE and MAE) compared with the baseline method. Our
method also provides interpretation capability from both spatial and temporal
aspects, including identifying predictive hotspots, local and global contributions,
and informative features.

Furthermore, there exist several limitations in our work. First, our archi-
tecture captures the spatial relationships (crime dynamics) among the neigh-
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(a) Aug 2015 - Dec 2016 (b) Jan 2017 - May 2018

Fig. 4: Change in predictive hotspots. The neighborhoods with darker red color
have more global contribution on forecasting heroin overdose occurrences on the
other neighborhoods for given time interval. The common predictive hotpots for
both time intervals are East Price Hill (13), Westwood (49) and West Price Hill
(48). While Avondale (1) and Walnut Hills (46) are predictive hotspots before
2017, Corryville (9) and CUF (10) contribute globally after 2017.

borhoods as a whole. It does not model pairwise relationship between target
neighborhood and any other. Second, we utilize static features extracted from
the US 2010 census data. Although static features are expected to change slowly
over time, a more up-to-date census data may yield more accurate results. As
a future work, we plan to improve our architecture in a way that it considers
spatial relationships between all pairs of locations. We also plan to utilize static
features extracted from more recent sources.
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