
Using Java to Provide Cognitive Models with a More

Universal Way to Interact with Graphical User Interfaces

Farnaz Tehranchi1✉, Frank E. Ritter1

1 Pennsylvania State University, University Park, PA, USA

{farnaz.tehranchi,frank.ritter}@psu.edu

Abstract. We present JSegMan, an approach to extend interaction in the ACT-

R cognitive architecture. JSegMan allows cognitive models to interact directly

with any application on a PC. JSegMan also simulates human visual attention

movements. This work allows the behavior of models to be compared more di-

rectly to human behavior by using the same uninstrumented interface. This

work also provides direct support for automated user interface testing and

closed-loop system control. Furthermore, a new data structurevisual pat-

ternshas been introduced to provide a more realistic representation of the

world. We tested JSegMan by using it with an existing ACT-R model of a

spreadsheet task, the Dismal model. Because the model interacted directly with

a spreadsheet, we found defects in the Dismal model and resolved them. The

revised model more accurately predicted a 20-min task while performing the

task.

Keywords. Cognitive model; Cognitive architecture; Human-computer inter-

face, interaction; Perception and motor output; Computer vision; Simulated

eyes and hands.

1 Introduction

Cognitive architectures are infrastructures for cognitive science theory and provide

computational frameworks to execute theories. They are languages specifically de-

signed for modeling, such as Soar [1] and ACT-R [2]. We use ACT-R to develop

cognitive models because it has a useful tutorial and reference manual, and is easily

extendable through Lisp. We present an interactive approach that can move the cur-

sor, click, and type in any application on a PC, and move the model’s visual attention.

Cognitive models that interact with interfaces could be more useful in HCI [3-5] if

they could intent with more tasks. To achieve this, cognitive models should be able to

pass commands to the task environment and have access to the information on the

screen to interact. With these abilities, cognitive models will be easier to develop and

apply. This approach can be called a Cognitive Model Interface Management System

(CMIMS), which is an extension of User Interface Management Systems (UIMS) [6].

We first provide a summary of suggestions from previous work about how models

interact with the world. We will then describe the design of our JSegMan system that

is independent of interface design and explain how it can be used to work with the

mailto:frank.ritter%7D@psu.edu

Dismal spreadsheet task and an existing ACT-R model [7]. The revised model with

JSegMan predicted published response times more accurately. Finally, we provide

conclusions, lessons, and insights.

2 Previous Systems

There are several approaches used by modelers to interact with the world. These

include (a) modifying existing interfaces and creating interfaces in a special tool,

(b) defining a communication protocol to bond a cognitive architecture process with

another process that can implement actions, and (c) interacting with the operating

system to generate commands and parse the screen bitmap. Previous systems illustrat-

ing these approaches provide lessons for our work.

The approach of modifying the interface or working in an interface language has

been introduced in ACT-R/PM [8]. ACT-R/PM allows ACT-R models to interact

with interfaces built within a special Common Lisp window. Cognitive Code is an-

other approach that focuses on ACT-R devicesextensions of the ACT-R framework

that provide external environments with which the models can interact. A successful

version of this method is Salvucci’s driver model [9]. He also introduced a new im-

plementation of ACT-R in Java that can be used as a library in other ACT-R projects

[10, 11]. Here, the ACT-R motor and vision module have been hard-coded, not con-

figurable, and limited to a Java applet in the Cognitive Code.

For the second approach, Ong provides MONGSU as a general solution to the

problem of connecting ACT-R to wide-ranging software programs [12]. His work

proposes the idea of communicating between two processes through a UNIX socket.

However, establishing the socket connection requires an additional application and

advanced knowledge of programming. Hope et al. [13] presented a simplified interac-

tion scenario between cognitive models and task environments through a JSON net-

work interface. To use this connection, a new ACT-R device module (JNI module) for

handling the communication must be added to the cognitive model. This method has

been tested in different environments, such as the REACT-R module that uses the JNI

module to connect ACT-R with a Unity 3D simulation [14]. Yet, the current JNI API

version does not support all ACT-R functions from the motor and visual modules and

does not have an independent interface. Thus, it is more useful for advanced users.

The third approach, SegMan, was an approach to interact with interfaces based on

operating system calls [15-17]. It generated motor commands and injected them into

the operating system event queue, and it parsed the screen bitmap to find objects. It

was never fully completed but was used by several models, including ones that drove

simulated cars [18], robots [15], and a variety of online systems including driving

games, robot operation, and other screen-based interfaces [16, 17].

Our previous work [19] tried to provide a connection to any task environments in

Emacs. We implemented pressing a key, moving a cursor, clicking a mouse, and

moving attention. Our approach was independent of ACT-R model scripts. The eyes

and hands method only worked on Emacs-based tasks. Emacs restrictions prevent this

work from being a generic solution strategy.

Other approaches such as ACT-R/E [20] added new modules to ACT-R or modi-

fied ACT-R’s modules. Neither ACT-R/E’s technical details nor its re-usability is

formally described.

In summary, the motivation for these simulated eyes and hands is to allow a model

to interact with the same task that human subjects have to correspond more closely to

human performance. Additionally, why do it separately for every project? Users could

modify each application, but then a model of the eye and hand would have to be cre-

ated in an awkward language and repeatedly. What we will do, however, is to create a

way to interact with all interfaces using an extended Java library to input motor com-

mands (keystrokes and mouse moves) and also a primitive vision system to see ob-

jects on the screen using pattern recognition and other computer algorithms.

3 The JSegMan Structures

The primary process of perceptual-motor for JSegMan is implemented in Java (Figure

1). We used two Java packages: (1) Robot and (2) Sikuli [21]. JSegMan uses Emacs

as a coordination system, but it does not otherwise depend on Emacs functionality.

In the Shell environment, both ACT-R and Java processes can be run individually

by passing arguments to each other (see Figure 1). When the Java process is running,

the ACT-R process pauses and resumes when Java finishes the task. Therefore, the

Java task interaction times will not affect the ACT-R response time. The Java process

performs the visual and motor actions and gets feedback from the task environment.

Although JSegMan’s Java process verifies the correctness of the perceptual-motor

function, JSegMan is still an open-looped control system because its ACT-R process

does not wait for verification from the Java process nor check that it was successful.

Fig. 1. Main components of the JSegMan approach/system.

3.1 Simulated Hands

The hand's simulation produces keyboard and mouse motor abilities. The ACT-R

Motor module interacts with the computer by pressing keys and moving

and clicking the mouse. Creating these capabilities was difficult to do within Emacs

while using Emacs. While we still think it is possible, for generalizability and ease of

use, we started to investigate other approaches to simulate. We found that Java has

useful pre-implemented algorithms that can be used to simulate the interaction. The

Java Robot package implements actions for the ACT-R motor module. Moving the

mouse pointer as a surrogate for moving ACT-R’s attention, clicking a mouse, and

pressing keystrokes are handled by this package. Without using any user interface

layer, we can directly get the mouse screen-x and screen-y locations. Figure 1 shows

that the three motor module commands can be handled by the Java process (move

cursor, click, and press keystrokes). The ACT-R process makes a call to the Java pro-

cess with two input arguments. The first argument is a JSegMan function for the mo-

tor module; the second argument is the function parameter. For instance, the ACT-R

process passes the presskey function and a letter (as a string) to the Java process to

handle keypresses in the task environment.

3.2 Simulated Eyes

JSegMan uses patterns to recognize visual scenes and applies a pattern matching algo-

rithm. Figure 2 demonstrates different patterns in the Dismal window, spreadsheet

task environment in the Emacs. A pattern is a representation of an object in the visual

scene. Patterns are a combination of visual location and visual object chunks. ACT-R

can access all required objects of the current visual scene by defining them as inde-

pendent patterns. Patterns should be significant enough for JSegMan to be identified

uniquely. For instance, Figure 2b shows the differences between two patterns. Be-

cause dEdit is a unique menu icon and is only used in the Dismal window, its pattern

can be small and only contains the dEdit word. However, the File pattern exists in all

windows; to identify the File pattern just in Emacs window, the pattern should in-

clude more content such as the Emacs logo.

(a) (b)

Fig. 2. (a) The Dismal window in Emacs and (b) File and dEdit patterns.

Using patterns instead of existing ACT-R visual objects eliminates the dependency

on features such as size and location for the cognitive model. Consequently, changes

in the visual scene cannot affect patterns such as changes in screen resolution and

size. The model can still find the target visual object because attention does not move

by screen-x and screen-y. Instead, the model finds/re-finds the pattern in the visual

scene. JSegMan can simply get these features and update the visual representation in

ACT-R from the Java process. This approach is independent of the task environ-

ment’s system because the location of objects on the screen does not affect the recog-

nition. Each pattern’s existence will be checked by the Java process (find pattern in

Figure 1). The current visual scene is a screenshot of a computer screen that is cap-

tured automatically by the Java process. ACT-R passes the Value slot in the vision

object, the name of the pattern, to the Java process (load pattern in Figure 1). Finally,

the task environment responds successfully to each of the requests made by the ACT-

R model, and the ACT-R model is able to create and attend to objects within the dy-

namically changing visual scene.

The experimental environment is an application GUI that contains the information

of visible objects such as labels, text fields, images, buttons, links, radio buttons, and

toggle buttons. With Sikuli, we have access to all these objects and can define them as

Java objects [21, 22]. With Sikuli, cognitive models can identify and control GUI

components and also benefit from text recognition (OCR). More specifically, it uses

screen bitmaps to search patterns to direct mouse and keyboard events in contrast to

seeking screen locations, which may change during the experiment. Also, it utilizes a

pattern-matching algorithm in OpenCV, an open-source computer vision library in

which a pattern (small images) are compared against the overlapped image regions

(the computer screen). For instance, to find the File pattern in Figure 2a, the pattern-

matching algorithm slides through the screen and compares the overlapped areas with

the File pattern. After comparison results are generated, the algorithm will select the

best-matching item. Further details, installation document and instructions, and ex-

ample models can be found on the project’s website1.

3.3 Applying JSegMan to the Dismal model

To test JSegMan, we worked with a spreadsheet task called the Dismal task and an

ACT-R task model [7]. This task takes human subjects for about 20-30 minutes to

perform. It is made up of 14 subtasks (e.g., click on the File) that are performed in a

spreadsheet built in Emacs, but these tasks could quite literally now be done by the

model using other unmodified spreadsheet applications such as Excel. In models like

Dismal, the model’s performance on the Dismal spreadsheet task is compared to the

performance of participants. However, this comparison will not be completely realis-

tic because the detailed trace of hand, fingers, and mouse movements has not been

modeled in much detail.

In our analysis of the output of the model, the keystrokes and mouse moves, we

found some missing actions. Including these missing actions increased the total task

time. These modifications were independent of JSegMan. In this case, JSegMan

helped fix system deficiencies. We were able to implement all the motor actions relat-

ed to the keyboard in this model. By redefining some of the keystrokes, we made

more realistic key press actions in ACT-R’s virtual keyboard in ACT-R. Pressing a

keystroke can happen when the model hand or finger is in the right position. For some

keys that are not reachable by either the left or right hands, there must be a request to

1 https://sites.psu.edu/ftehranchi/projects/

the motor module to adjust the hand position that was not included in the initial mod-

el. Besides proving the functionality of the JSegMan Dismal model, we were able to

recognize the hand or finger re-position requirements that were not in the original

model. The absence of these hand’s movements was determined by JSegMan. We

added these missing movements to the existing model [7].

Table 1 shows how the response time was affected by our modification while the

model learns over four trials. As a result, with the JSegMan hands correction, the

Dismal model better fits human data, has an increased correlation, and decreases

mean square error.

Table 1. The mean task completion time (seconds) for four learning sessions for

the Dismal task (N=30) [7].

M SE M SE M SE

1 1366 60.8 1326 12.078 1338 12.06

2 894 26.6 891 6.175 893 5.144

3 727 25.5 693 4.496 700 6.207

4 659 22.7 594 5.775 603 4.35

MSE 1747.5 1162.5

Day
Human Original Model

With JSegMan Hands

Correction

Correlation 0.997 0.9978

4 Conclusion and Future Work

We present a solution to the challenge of communication between external task envi-

ronments and cognitive architectures that previously required redefining interfaces for

cognitive models. JSegMan provides simulated eyes and hands. It currently requires

the original ACT-R model, the Robot and Sikuli packages in Java, and Emacs as glue.

We augmented the manual and the vision module with operating level accessibility.

The JSegMan approach will increase the usability, applicability, and accessibility of

cognitive architectures. This article focused on models written with the ACT-R cogni-

tive architecture, but this approach and system could be used by other architectures.

Further work remains. We need to implement a closed system control to check if

the action takes place correctly in JSegMan and the eyes move with the hands suc-

cessfully. This result illustrates that JSegMan also offers the ability to understand a

model more accurately and adds to the capacity to understand the model. JSegMan

needs to create multi-part patterns to interact with more complicated environments. In

the future, we plan on offering an installation method that includes bundled versions

of all dependencies, allowing near plug and play support with ACT-R. JSegMan

components need to be expanded so JSegMan can observe the users, collect more

realistic inputs, and thus better predict more complex, interactive human performance.

Therefore, JSegMan can start to be a substitute for humans in the software testing

process and can more seriously be considered as a software testing tool.

5 Acknowledgments

This work was funded partially by ONR (N00014-15-1-2275). David Reitter has pro-

vided useful comments on Emacs and Aquamacs (the Emacs version for Mac). We

wish to thank Jong Kim who provided the idea for ESegMan, and Dan Bothell for his

assistance wrangling ACT-R.

References

1. Newell, A.: Unified Theories of Cognition. Harvard University Press, Cambridge, MA

(1990)

2. Anderson, J.R.: How can the human mind exist in the physical universe? Oxford University

Press, New York, NY (2007)

3. Byrne, M.D., Kirlik, A.: Using computational cognitive modeling to diagnose possible

sources of aviation error. International Journal of Aviation Psychology 15, 135-155 (2005)

4. Pew, R.W., Mavor, A.S. (eds.): Human-system integration in the system development

process: A new look. National Academy Press., Washington, DC (2007)

5. Kieras, D.E.: Model-based evaluation. In: Jacko, J., Sears, A. (eds.) Handbook for human-

computer interaction, pp. 1139-1151. Erlbaum, Mahwah, NJ (2003)

6. Ritter, F.E., Baxter, G.D., Jones, G., Young, R.M.: User interface evaluation: How

cognitive models can help. In: Carroll, J. (ed.) Human-Computer Interaction in the New

Millenium, pp. 125-147. Addison-Wesley, Reading, MA (2001)

7. Paik, J., Kim, J.W., Ritter, F.E., Reitter, D.: Predicting user performance and learning in

human-computer interaction with the Herbal compiler. ACM Transactions on Computer-

Human Interaction 22, 25 (2015)

8. Byrne, M.D., Anderson, J.R.: Perception and action. In: Anderson, J.R., Lebiere, C. (eds.)

The atomic components of thought. Erlbaum, Mahwah, NJ (1998)

9. Salvucci, D.D.: Modeling driver behavior in a cognitive architecture. Human Factors 48,

362-380 (2006)

10. Salvucci, D.D.: Rapid prototyping and evaluation of in-vehicle interfaces. ACM

Transactions on Computer-Human Interaction 16, 33 (2009)

11. Salvucci, D.D.: Integration and reuse in cognitive skill acquisition. Cognitive Science 37,

829-860 (2013)

12. Ong, R.: Mechanisms for routinely tying cognitive models to interactive simulations. U. of

Nottingham. Available as ESRC Centre for Research in Development, Instruction and

Training Technical report #21 (1994)

13. Hope, R.M., Schoelles, M.J., Gray, W.D.: Simplifying the interaction between cognitive

models and task environments with the JSON Network Interface. Behavior Research

Methods 46, 1007-1012 (2014)

14. Salt, L., Wise, J., Sennersten, C., Lindley, C.A.: REACT-R and Unity Integration. In:

Proceedings on the International Conference on Artificial Intelligence (ICAI), pp. 31.

(2016)

15. Ritter, F.E., Kukreja, U., St. Amant, R.: Including a model of visual processing with a

cognitive architecture to model a simple teleoperation task. Journal of Cognitive

Engineering and Decision Making 1, 121-147 (2007)

16. St. Amant, R., Riedel, M.O., Ritter, F.E., Reifers, A.: Image processing in cognitive models

with SegMan. In: Proceedings of HCI International '05. Erlbaum, (2005)

17. St. Amant, R., Riedl, M.O.: A perception/action substrate for cognitive modeling in HCI.

International Journal of Human-Computer Studies 55, 15-39 (2001)

18. Ritter, F.E., Van Rooy, D., St. Amant, R., Simpson, K.: Providing user models direct access

to interfaces: An exploratory study of a simple interface with implications for HRI and HCI.

IEEE Transactions on System, Man, and Cybernetics, Part A: Systems and Humans 36,

592-601 (2006)

19. Tehranchi, F., Ritter, F.E.: An eyes and hands model for cognitive architectures to interact

with user interfaces. In: MAICS, The 28th Modern Artificial Intelligence and Cognitive

Science Conference, pp. 15-20. (2017)

20. Trafton, G., Hiatt, L., Harrison, A.M., Tamborello, F., Khemlani, S., Schultz, A.: ACT-R/E:

An embodied cognitive architecture for human-robot interaction. Journal of Human-Robot

Interaction 2, 30-55 (2013)

21. Yeh, T., Chang, T.-H., Miller, R.C.: Sikuli: Using GUI screenshots for search and

automation. In: Proceedings of the 22nd Annual ACM symposium on User interface

software and technology, pp. 183-192. ACM, (2009)

22. Kasper, M., Correll, N., Yeh, T.: Abstracting perception and manipulation in end-user robot

programming using Sikuli. In: Technologies for Practical Robot Applications (TePRA),

2014 IEEE International Conference on, pp. 1-6. IEEE, (2014)

