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Abstract. We present JSegMan, an approach to extend interaction in the ACT-

R cognitive architecture. JSegMan allows cognitive models to interact directly 

with any application on a PC. JSegMan also simulates human visual attention 

movements. This work allows the behavior of models to be compared more di-

rectly to human behavior by using the same uninstrumented interface. This 

work also provides direct support for automated user interface testing and 

closed-loop system control. Furthermore, a new data structurevisual pat-

ternshas been introduced to provide a more realistic representation of the 

world. We tested JSegMan by using it with an existing ACT-R model of a 

spreadsheet task, the Dismal model. Because the model interacted directly with 

a spreadsheet, we found defects in the Dismal model and resolved them. The 

revised model more accurately predicted a 20-min task while performing the 

task.  
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1 Introduction 

Cognitive architectures are infrastructures for cognitive science theory and provide 

computational frameworks to execute theories. They are languages specifically de-

signed for modeling, such as Soar [1] and ACT-R [2]. We use ACT-R to develop 

cognitive models because it has a useful tutorial and reference manual, and is easily 

extendable through Lisp. We present an interactive approach that can move the cur-

sor, click, and type in any application on a PC, and move the model’s visual attention. 

Cognitive models that interact with interfaces could be more useful in HCI [3-5] if 

they could intent with more tasks. To achieve this, cognitive models should be able to 

pass commands to the task environment and have access to the information on the 

screen to interact. With these abilities, cognitive models will be easier to develop and 

apply. This approach can be called a Cognitive Model Interface Management System 

(CMIMS), which is an extension of  User Interface Management Systems (UIMS) [6]. 

We first provide a summary of suggestions from previous work about how models 

interact with the world. We will then describe the design of our JSegMan system that 

is independent of interface design and explain how it can be used to work with the 
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Dismal spreadsheet task and an existing ACT-R model [7]. The revised model with 

JSegMan predicted published response times more accurately. Finally, we provide 

conclusions, lessons, and insights. 

2 Previous Systems 

There are several approaches used by modelers to interact with the world.  These 

include (a) modifying existing interfaces and creating interfaces in a special tool, 

(b) defining a communication protocol to bond a cognitive architecture process with 

another process that can implement actions, and (c) interacting with the operating 

system to generate commands and parse the screen bitmap. Previous systems illustrat-

ing these approaches provide lessons for our work.  

The approach of modifying the interface or working in an interface language has 

been introduced in ACT-R/PM [8]. ACT-R/PM allows ACT-R models to interact 

with interfaces built within a special Common Lisp window. Cognitive Code is an-

other approach that focuses on ACT-R devicesextensions of the ACT-R framework 

that provide external environments with which the models can interact. A successful 

version of this method is Salvucci’s driver model [9]. He also introduced a new im-

plementation of ACT-R in Java that can be used as a library in other ACT-R projects 

[10, 11]. Here, the ACT-R motor and vision module have been hard-coded, not con-

figurable, and limited to a Java applet in the Cognitive Code. 

For the second approach, Ong provides MONGSU as a general solution to the 

problem of connecting ACT-R to wide-ranging software programs [12]. His work 

proposes the idea of communicating between two processes through a UNIX socket. 

However, establishing the socket connection requires an additional application and 

advanced knowledge of programming. Hope et al. [13] presented a simplified interac-

tion scenario between cognitive models and task environments through a JSON net-

work interface. To use this connection, a new ACT-R device module (JNI module) for 

handling the communication must be added to the cognitive model. This method has 

been tested in different environments, such as the REACT-R module that uses the JNI 

module to connect ACT-R with a Unity 3D simulation [14]. Yet, the current JNI API 

version does not support all ACT-R functions from the motor and visual modules and 

does not have an independent interface. Thus, it is more useful for advanced users. 

The third approach, SegMan, was an approach to interact with interfaces based on 

operating system calls [15-17].  It generated motor commands and injected them into 

the operating system event queue, and it parsed the screen bitmap to find objects.  It 

was never fully completed but was used by several models, including ones that drove 

simulated cars [18], robots [15], and a variety of online systems including driving 

games, robot operation, and other screen-based interfaces [16, 17]. 

Our previous work [19] tried to provide a connection to any task environments in 

Emacs. We implemented pressing a key, moving a cursor, clicking a mouse, and 

moving attention. Our approach was independent of ACT-R model scripts. The eyes 

and hands method only worked on Emacs-based tasks. Emacs restrictions prevent this 

work from being a generic solution strategy. 



Other approaches such as ACT-R/E [20] added new modules to ACT-R or modi-

fied ACT-R’s modules. Neither ACT-R/E’s technical details nor its re-usability is 

formally described. 

In summary, the motivation for these simulated eyes and hands is to allow a model 

to interact with the same task that human subjects have to correspond more closely to 

human performance. Additionally, why do it separately for every project? Users could 

modify each application, but then a model of the eye and hand would have to be cre-

ated in an awkward language and repeatedly. What we will do, however, is to create a 

way to interact with all interfaces using an extended Java library to input motor com-

mands (keystrokes and mouse moves) and also a primitive vision system to see ob-

jects on the screen using pattern recognition and other computer algorithms.  

3 The JSegMan Structures 

The primary process of perceptual-motor for JSegMan is implemented in Java (Figure 

1). We used two Java packages: (1) Robot and (2) Sikuli [21]. JSegMan uses Emacs 

as a coordination system, but it does not otherwise depend on Emacs functionality. 

In the Shell environment, both ACT-R and Java processes can be run individually 

by passing arguments to each other (see Figure 1). When the Java process is running, 

the ACT-R process pauses and resumes when Java finishes the task. Therefore, the 

Java task interaction times will not affect the ACT-R response time. The Java process 

performs the visual and motor actions and gets feedback from the task environment. 

Although JSegMan’s Java process verifies the correctness of the perceptual-motor 

function, JSegMan is still an open-looped control system because its ACT-R process 

does not wait for verification from the Java process nor check that it was successful. 

 

 
Fig. 1. Main components of the JSegMan approach/system. 

3.1 Simulated Hands  

The hand's simulation produces keyboard and mouse motor abilities. The ACT-R 

Motor module interacts with the computer by pressing keys and moving 

and clicking the mouse. Creating these capabilities was difficult to do within Emacs 



while using Emacs. While we still think it is possible, for generalizability and ease of 

use, we started to investigate other approaches to simulate. We found that Java has 

useful pre-implemented algorithms that can be used to simulate the interaction. The 

Java Robot package implements actions for the ACT-R motor module. Moving the 

mouse pointer as a surrogate for moving ACT-R’s attention, clicking a mouse, and 

pressing keystrokes are handled by this package. Without using any user interface 

layer, we can directly get the mouse screen-x and screen-y locations. Figure 1 shows 

that the three motor module commands can be handled by the Java process (move 

cursor, click, and press keystrokes). The ACT-R process makes a call to the Java pro-

cess with two input arguments. The first argument is a JSegMan function for the mo-

tor module; the second argument is the function parameter. For instance, the ACT-R 

process passes the presskey function and a letter (as a string) to the Java process to 

handle keypresses in the task environment. 

3.2 Simulated Eyes  

JSegMan uses patterns to recognize visual scenes and applies a pattern matching algo-

rithm. Figure 2 demonstrates different patterns in the Dismal window, spreadsheet 

task environment in the Emacs. A pattern is a representation of an object in the visual 

scene. Patterns are a combination of visual location and visual object chunks. ACT-R 

can access all required objects of the current visual scene by defining them as inde-

pendent patterns. Patterns should be significant enough for JSegMan to be identified 

uniquely. For instance, Figure 2b shows the differences between two patterns. Be-

cause dEdit is a unique menu icon and is only used in the Dismal window, its pattern 

can be small and only contains the dEdit word. However, the File pattern exists in all 

windows; to identify the File pattern just in Emacs window, the pattern should in-

clude more content such as the Emacs logo. 

 

 
(a)                                                                     (b) 

Fig. 2. (a) The Dismal window in Emacs and (b) File and dEdit patterns. 

 

Using patterns instead of existing ACT-R visual objects eliminates the dependency 

on features such as size and location for the cognitive model. Consequently, changes 

in the visual scene cannot affect patterns such as changes in screen resolution and 

size. The model can still find the target visual object because attention does not move 

by screen-x and screen-y. Instead, the model finds/re-finds the pattern in the visual 



scene. JSegMan can simply get these features and update the visual representation in 

ACT-R from the Java process. This approach is independent of the task environ-

ment’s system because the location of objects on the screen does not affect the recog-

nition. Each pattern’s existence will be checked by the Java process (find pattern in 

Figure 1). The current visual scene is a screenshot of a computer screen that is cap-

tured automatically by the Java process. ACT-R passes the Value slot in the vision 

object, the name of the pattern, to the Java process (load pattern in Figure 1). Finally, 

the task environment responds successfully to each of the requests made by the ACT-

R model, and the ACT-R model is able to create and attend to objects within the dy-

namically changing visual scene.  

The experimental environment is an application GUI that contains the information 

of visible objects such as labels, text fields, images, buttons, links, radio buttons, and 

toggle buttons. With Sikuli, we have access to all these objects and can define them as 

Java objects [21, 22]. With Sikuli, cognitive models can identify and control GUI 

components and also benefit from text recognition (OCR). More specifically, it uses 

screen bitmaps to search patterns to direct mouse and keyboard events in contrast to 

seeking screen locations, which may change during the experiment. Also, it utilizes a 

pattern-matching algorithm in OpenCV, an open-source computer vision library in 

which a pattern (small images) are compared against the overlapped image regions 

(the computer screen). For instance, to find the File pattern in Figure 2a, the pattern-

matching algorithm slides through the screen and compares the overlapped areas with 

the File pattern. After comparison results are generated, the algorithm will select the 

best-matching item. Further details, installation document and instructions, and ex-

ample models can be found on the project’s website1.  

3.3 Applying JSegMan to the Dismal model 

To test JSegMan, we worked with a spreadsheet task called the Dismal task and an 

ACT-R task model [7]. This task takes human subjects for about 20-30 minutes to 

perform. It is made up of 14 subtasks (e.g., click on the File) that are performed in a 

spreadsheet built in Emacs, but these tasks could quite literally now be done by the 

model using other unmodified spreadsheet applications such as Excel. In models like 

Dismal, the model’s performance on the Dismal spreadsheet task is compared to the 

performance of participants. However, this comparison will not be completely realis-

tic because the detailed trace of hand, fingers, and mouse movements has not been 

modeled in much detail.  

In our analysis of the output of the model, the keystrokes and mouse moves, we 

found some missing actions. Including these missing actions increased the total task 

time. These modifications were independent of JSegMan. In this case, JSegMan 

helped fix system deficiencies. We were able to implement all the motor actions relat-

ed to the keyboard in this model. By redefining some of the keystrokes, we made 

more realistic key press actions in ACT-R’s virtual keyboard in ACT-R. Pressing a 

keystroke can happen when the model hand or finger is in the right position. For some 

keys that are not reachable by either the left or right hands, there must be a request to 
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the motor module to adjust the hand position that was not included in the initial mod-

el. Besides proving the functionality of the JSegMan Dismal model, we were able to 

recognize the hand or finger re-position requirements that were not in the original 

model. The absence of these hand’s movements was determined by JSegMan. We 

added these missing movements to the existing model [7].  

Table 1 shows how the response time was affected by our modification while the 

model learns over four trials. As a result, with the JSegMan hands correction, the 

Dismal model better fits human data, has an increased correlation, and decreases 

mean square error.  

 

Table 1. The mean task completion time (seconds) for four learning sessions for 

the Dismal task (N=30) [7]. 

 

M SE M SE M SE

1 1366 60.8 1326 12.078 1338 12.06

2 894 26.6 891 6.175 893 5.144

3 727 25.5 693 4.496 700 6.207

4 659 22.7 594 5.775 603 4.35

MSE 1747.5 1162.5

Day
Human Original Model

With JSegMan Hands 

Correction

Correlation 0.997 0.9978

 

4 Conclusion and Future Work 

We present a solution to the challenge of communication between external task envi-

ronments and cognitive architectures that previously required redefining interfaces for 

cognitive models. JSegMan provides simulated eyes and hands. It currently requires 

the original ACT-R model, the Robot and Sikuli packages in Java, and Emacs as glue. 

We augmented the manual and the vision module with operating level accessibility. 

The JSegMan approach will increase the usability, applicability, and accessibility of 

cognitive architectures. This article focused on models written with the ACT-R cogni-

tive architecture, but this approach and system could be used by other architectures. 

Further work remains.  We need to implement a closed system control to check if 

the action takes place correctly in JSegMan and the eyes move with the hands suc-

cessfully.  This result illustrates that JSegMan also offers the ability to understand a 

model more accurately and adds to the capacity to understand the model. JSegMan 

needs to create multi-part patterns to interact with more complicated environments. In 

the future, we plan on offering an installation method that includes bundled versions 

of all dependencies, allowing near plug and play support with ACT-R. JSegMan 

components need to be expanded so JSegMan can observe the users, collect more 

realistic inputs, and thus better predict more complex, interactive human performance. 

Therefore, JSegMan can start to be a substitute for humans in the software testing 

process and can more seriously be considered as a software testing tool. 
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