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Abstract. Prior knowledge influences perception, as evidenced by categorical 
perception phenomena, in which expectations create psychometric distortions of 
perceptual space. These distortions are nonetheless associated with categoriza-
tion accuracy. The paradoxical association between strength of perceptual dis-
tortion (itself an inaccurate representation of reality) and accuracy of categori-
zation judgments suggests that understanding the computational mechanism of 
categorical perception could lead to advances in machine learning and artificial 
intelligence. Here, a framework is presented that combines signal detection the-
ory (SDT) and predictive processing. It instantiates the SDT expected value 
function in a Bayesian generative hierarchy, using the function’s parameters as 
a priori expectations about the perceptual environment. These priors then 
weight sensor response profiles. This approach links prediction error minimiza-
tion to the optimality of perceptual judgment. The framework’s a posteriori 
predictions for incoming sensory signals model the distortions of perceptual 
space associated with categorical perception. The framework provides a compu-
tational mechanism by which SDT’s decision criterion is emergent from sensor 
tuning, rather than determined by a “decision” stage, after “perception.” 
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Introduction 

Prior knowledge influences perception. For example, in the psychological phenome-
non known as categorical perception, prior knowledge induces psychological distor-
tion of perceptual space. Perception is said to be "categorical" when discriminability 
of stimuli that vary on a continuum is more pronounced for two stimuli from different 
categories that span the continuum than for two stimuli from within a particular cate-
gory–despite uniform physical differences across stimulus pairs. Prior knowledge, 
made accessible via words used in task instructions, creates a salient perceptual dif-
ference between stimuli even when such a difference does not in fact physically exist 
among the stimuli themselves. This difference in discriminability, called the between-
category discrimination advantage, is associated with efficient stimulus identification 
(e.g., [1]): categorization accuracy is associated with large between-category discrim-
ination advantage (see, e.g., [2] for examples in the domain of social perceptual 
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judgments). The paradoxical association between strength of perceptual distortion 
(itself an inaccurate representation of reality) and accuracy of categorization judg-
ments suggests that understanding the computational mechanism of categorical per-
ception could lead to advances in machine learning and artificial intelligence. 

That prior knowledge influences perception suggests a blurring of the traditional 
distinction between “perception” and “decision,” which posits that decision factors, 
such as the risk associated with alternative decision outcomes, are applied to percep-
tion after the act. However, while evidence accumulates documenting such influence 
(e.g., [3]), questions remain about what specific kind of knowledge influences what 
people see, and how that knowledge is related to the external world and behavior. To 
begin addressing these questions, a framework is being developed in which percep-
tion and the early, low-level classification of sensory information are themselves 
treated as decisions–processes that guide behavior pursuant to implicit knowledge 
about the environment. 

Here, a framework is presented that combines insights from behavioral ecology 
and neuroscience to create a generative model of categorical perception. In the model, 
strength of perceptual distortion is linked to optimality of category judgments via the 
accuracy of the agent’s knowledge of environmental contingencies. Signal detection 
approaches from behavioral ecology (e.g., [4]), provide three elements of the frame-
work: a conceptual model of percept categorization, described at the phenomenologi-
cal level; a mathematical model that sets forth requirements for optimal categoriza-
tion, situated with respect to environmental contingencies; and a specification of what 
prior knowledge is needed for optimal categorization. Predictive processing ap-
proaches from neuroscience (e.g., [5]), provide two elements of the framework: a 
structural mechanism by which relatively abstract, high-level prior knowledge can 
come to influence relatively specific, low-level sensory processing; and a computa-
tional mechanism to transform a sensory signal into a percept while accounting for 
prior knowledge. 

Optimal Categorization 

A central piece of the framework is a mathematical model of optimal categorization 
based on signal detection theory (SDT; [6]). SDT provides three parameters that de-
scribe the environment and dictate how perceivers should optimally categorize stimu-
li. In, for example, the social perception of anger (Fig. 1A), signals (x-axis) comprise 
two categories: targets, defining what anger looks like, and foils, defining what not-
anger looks like. Signals from either category vary over a perceptual domain, from 
weak to strong cues of anger. Any signal can arise from either category, with a likeli-
hood given by the category distributions (bell-shaped probability density functions). 
Overlap of the distributions creates a risk of misclassification due to perceptual simi-
larity of targets and foils. Three parameters describe the perceptual environment: 
target vs. foil perceptual similarity (described by distribution means and variances), 
payoffs (benefits and costs accrued for four possible decision outcomes: correct detec-
tions, false alarms, missed detections, and correct rejections), and the base rate of 
encountering targets relative to foils. d' (sensitivity) is a common measure of ability to 
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discriminate targets from foils. Beta and c (response bias) are common measures of 
risk weighting.  

The combination of perceived similarity of target vs. foil categories, payoffs, and 
the base rate determines a "line of optimal response" (LOR, Fig. 1B, curve on inset 
graph) that relates a perceiver's sensitivity (x-axis) to the amount of bias (y-axis) that 
will maximize the perceiver's expected net benefit. In order to optimize decisions, 
perceivers with lower perceptual sensitivity require more extreme response bias (here, 
a liberal-going bias, c<0).  

 

Fig. 1. Perception as a decision, after [7]. 

In this framework, activating category knowledge provides a set of expectations 
about the three parameters, which are used to generate predictions of forthcoming 
sensor data, influencing how a perceiver forms percepts from sensation. SDT models 
perceptual judgment, particularly when the same signal can be an exemplar of multi-
ple categories and when there are costs and benefits to miscategorization; it provides 
well understood measures of performance; and the SDT expected value function [8], 
links categorization to utility of the behavior, in the world, that follows the categoriza-
tion [7]. 

The Predictive Brain 

An additional central piece of the framework is an emerging theory of how the brain 
works. In “predictive processing” models of cognition (see [9] for an overview), one’s 
beliefs about the world (i.e., prior knowledge) yield predictions about incoming sen-
sory signals (e.g., [10]). At the highest level of a neuronal processing hierarchy these 
predictions are abstract (e.g., concerned with physiological allostasis [11]). The pre-
dictions become increasingly specific as they descend the hierarchy to primary senso-
ry cortex. There, they specify low-level sensory features [12]. On this account, predic-
tion error is encoded by sensory cortex, not stimulus features, per se. The generation 
of predictions and processing of errors can be modeled as a hierarchy of Bayesian 
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inference at each level of a hierar-
chy (Fig. 2). A prediction from 
level i, 𝑥i (an estimate of the 
Bayesian posterior probability), 
becomes the prior expectation, µ0, 
for the next deeper level, i+1. Lev-
el i+1 compares that prediction 
(now its own prior expectation) to 
an incoming signal, xi+1, and passes 
the error (εi+1) back up to level i, 
where it is received as an incoming 
signal, xi. Thus, the error of level i’s prediction from time t = 0 is calculated by the 
next level down, i+1; the signal processed by level i at time t=0 is the error of that 
level’s prediction from an earlier time point, t = -1; and the adjustment of level i’s 
prior expectation in light of that error is performed by the next level up, at a later 
time, t = 1. A weighting term, w, weights the influence of a signal on a prediction by 
the variance of the signal relative to the prior expectation about it. See [13] for a deep 
probabilistic cognitive architecture for building more complex models. 

A Generative Model of Percept Formation 

The SDT and predictive processing pieces of the framework combine to create a 
computational model of percept formation in five steps (see Fig. 3). 

SDT’s expected value function uses three parameters to describe the perceptual 
judgment task: similarity, payoffs, and base rate. In step 1, the model takes values for 
these parameters as prior knowledge. The parameters’ values vary by context. In so-
cial perception, for example, the parameter values might differ depending on whether 
the man depicted in Fig. 3 is a friend or a supervisor. A perceiver with accurate esti-
mates of these values will optimize its exposure to mistaken classifications, maximiz-
ing its net benefit over a series of judgments [7].  

Fig. 3A depicts the similarity parameter as two Gaussians of a given mean and var-
iance. Fig. 3B depicts the SDT expected value function itself for a given set of param-
eter values; the maximum of this function locates the optimal decision criterion 
(downward-pointing arrow).  

The elements of the expected value function can be grouped into separate “yes” (or 
“go”) and “no” (or “no-go”) components (Fig 3C) [14]. These functions represent the 
expected value of categorizing a stimulus (x-axis) as a target (yes) or a foil (no), re-
spectively. 

At the framework’s lowest predicative processing hierarchy level are sensors with 
receptive fields characterized by Gaussian probability density functions, spanning the 
stimulus continuum. In Fig. 3E, the sensors are represented along the bottom edge of 
the panel, as the source of the vertical lines. In step 2, the model uses the yes and no 
expected value functions to create separate yes- and no-weighted response profiles for 
each sensor (not shown in Fig. 3). 

 
Fig. 2. Predictive processing hierarchy, after [13]. 
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In step 3, for each sensor, the yes and no expected values are compared, and the 
profile with the greatest expected value is retained as the sensor’s response profile 
(not shown in Fig. 3). 

In step 4 (Fig. 3D), the model weights the variance of the response profile for each 
receptor by the difference in expected value between the yes and no expected values. 
This weighted variance serves to tune the response profile of a given sensor. Each 
sensor’s contribution to responding to a given signal thereby optimizes the overall 
system’s response to that signal (its value on the x-axis) and the system’s expectations 
(prior knowledge) of the environmental contingencies associated with yes vs. no re-
sponse to signals arising from each of the two categories.  

In step 5, when an incoming signal, x, is received, it is processed across the array 
of weighted sensor response profiles, in a Kalman fusion-type manner. The Kalman 
process generates a predicted signal, or percept value, 𝑥 (Fig. 3E), representing a psy-
chological distortion of the objective signal value, x. 

 
 Fig. 3. Elements of the framework combining signal detection theory and predictive 
processing, and the resultant model of signal reception and percept formation. The vertical 
arrow demarcates signal detection theory’s optimal criterion location across panels A-C, which 
aligns with the maximal generative perceptual distortion at panel E. 

This distortion exhibits the hallmarks categorical perception: acquired equivalence 
of within category stimuli (Fig. 3E, red circles) and acquired distinctiveness of be-
tween category stimuli (Fig. 3E, arrow) [1]. Moreover, the maximal distortion of per-
cepts occurs at the traditional decision criterion location (maximum of the SDT ex-
pected value function (Fig. 3B). The model thus provides a computational mechanism 
that generates SDT’s optimal decision criterion from putatively Bayesian first princi-
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pals of perceptual discrimination and the modulation of perceptual processes by con-
ceptual knowledge.  

Discussion 

The framework presented here uses SDT as a conceptual model of perception, and 
instantiates the SDT expected value function in a predictive processing hierarchy. The 
model’s a posteriori predictions for incoming sensory signals resemble the distortions 
of perceptual space associated with categorical perception. In this model, SDT’s deci-
sion criterion, which is typically measured as a behavioral average over many trials, 
emerges from sensor receptive field tuning. Thus, response bias is encoded near the 
sensors, not applied to percepts in a separate “decision” step or module. 

This model uses conventional SDT to describe perceptual judgment at a functional 
level and predictive processing to inspire the computational mechanism for perceptual 
judgment. Nonetheless, more process-oriented approaches to perceptual judgment 
might substitute for traditional SDT, bringing their own strengths (e.g., general recog-
nition theory [15] or dynamic SDT [16]). Likewise, additional algorithms could 
potentially be applied to SDT’s probabilities and payoffs to create common cognitive 
biases (e.g., [17-19]). 

The model makes predictions for behavioral studies. In the model, the strength of 
between-category discrimination advantage (BCA, the amount of distortion at the 
downward arrow in Fig. 3) is a function of the accuracy of the prior expectations 
about the three SDT parameters. In simulation, less accurate parameters (relative to 
the simulation’s ground-truth) result in weaker BCA. In studies, when environmental 
contingencies dictate that some amount of response bias is optimal, then response bias 
should be encoded in the distortion of perceptual space such that optimality of bias 
should correlate with reduced prediction error and stronger distortion of perceptual 
space. 

Several elements of the model suggest possible avenues for advances in machine 
learning and AI. It has already been recognized that the predictive processing archi-
tecture is efficient once priors are established; only errors are transmitted, not increas-
ing complex models of the world. The model presented here additionally suggests that 
categorical perception could reflect a novel tactic for management of signal uncertain-
ty close to the sensor, by weighting the sensor response profiles as information as-
cends the hierarchy rather than as a separate, monolithic “decision” stage following 
“perception.” One can speculate that, at scale (e.g., for dense multimodal sensors 
supporting rich conceptual/semantic systems), the distortions associated with categor-
ical perception may yield more efficient and/or optimal classification than veridical 
perception followed by a subsequent decision stage.  
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