
Computational Analysis of Insurance
Complaints: GEICO Case Study

Amir Karami1 and Noelle M. Pendergraft2

1 College of Information and Communications, University of South Carolina, USA
karami@sc.edu

2 South Carolina Honors College, University of South Carolina, USA
noellep@email.sc.edu

Abstract. The online environment has provided a great opportunity for
insurance policyholders to share their complaints with respect to differ-
ent services. These complaints can reveal valuable information for insur-
ance companies who seek to improve their services; however, analyzing a
huge number of online complaints is a complicated task for human and
must involve computational methods to create an efficient process. This
research proposes a computational approach to characterize the major
topics of a large number of online complaints. Our approach is based on
using topic modeling approach to disclose the latent semantic of com-
plaints. The proposed approach deployed on thousands of GEICO neg-
ative reviews. Analyzing 1,371 GEICO complaints indicates that there
are 30 major complains in four categories: (1) customer service, (2) in-
surance coverage, paperwork, policy, and reports, (3) legal issues, and
(4) costs, estimates, and payments. This research approach can be used
in other applications to explore a large number of reviews.

Keywords: Insurance · Complaint analysis · Text mining · Topic model
· Online review · Opinion mining · Business.

1 Introduction

Consumers post millions of their opinions for products and services on the web-
site hosting online reviews. These hug amount of online reviews play an im-
portant role for business growth [7]. While positive feedback can help business
growth, negative feedback or complains have negative impacts on business rev-
enue along with higher hiring cost. In the $175 billion US auto insurance in-
dustry, different websites have been developed for collecting the thousands of
valuable reviews of policyholders. This data scale precludes manual annotation
and organization, and is a motivation for applying computational approaches.

There are two types of data: structured and unstructured. While structured
data such as numbers is clearly defined, unstructured data such as text is the
opposite. There are also two types of methods for computational data analysis:
supervised and unsupervised. The former one needs training data such as clas-
sification and regression methods, but the latter one doesn’t need training data
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such as clustering methods [8]. Some supervised methods have been used on
insurance-related structured data such as investigating customer retention and
insurance claim patterns using variables such as postal code, vehicle age, age,
and gender [21].

Surveys and polls are the traditional method used to gain insight into un-
derstanding of customer opinions regarding services or products [4]. However,
with advent of web, several studies have been developed to use online reviews to
collect public opinion data with respect to companies [5] and showed a positive
correlation between the average rating of online reviews and sales [1].

Online review analysis has been used to identify important factors of cus-
tomer satisfaction in different business applications such as hotel industry [19]
and restaurants [23]. Insurance-related studies also analyzed online reviews such
as using several variables such as policyholder age, review rating, and postal
code to predict whether a customer renews or retains her/his policy and to de-
tect high risk customers [21]. Although the related studies provided insightful
views to the literature, there isn’t any study to explore insurance-related online
reviews using unstructured data and unvised methods.

Among several insurances companies, GEICO is one of the top insurance
companies with more than 16 million policies and 24 million insured vehicles1.
This company has thousands of online reviews2 that manually analyzing them
is beyond human capabilities. This paper utilized an un approach to analyze
unstructured online reviews. We applied our approach on more than 1000 GEICO
online reviews to identify and categorize major complaints. Not only insurance
companies and providers but also other organizations can use this study to better
understand the concerns of their consumers and reflect upon those accordingly.

2 Methodology and Results

2.1 Data Collection

We collected this research data from format from https://www.consumeraffairs.

com/insurance/geico.htm . This website provides a platform for verified re-
viewers to share their opinions with respect to different services and products.
Each review contained a text review and star rating from 1 to 5. To focus on
complaints, we considered 1 and 2 star vehicle insurance reviews and found
1,371 negative reviews. This dataset is available at https://github.com/amir-
karami/Geico_Negative_Reviews.

2.2 N-gram Analysis

In this step, we applied bigram analysis. N-gram approach analyzes the sequence
of n words in a given corpus such as unigram analysis, n-gram of size 1, bigram
analysis, n-gram of size 2, and trigram analysis, n-gram of size 3. This step came

1https://www.geico.com/about/corporate/at-a-glance/
2https://clearsurance.com/best-car-insurance-2018

https://www.consumeraffairs.com/insurance/geico.htm
https://www.consumeraffairs.com/insurance/geico.htm
https://github.com/amir-karami/Geico_Negative_Reviews
https://github.com/amir-karami/Geico_Negative_Reviews
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with removing the words that don’t have any semantic value like the and a using
a standard stopwords list. The n-gram analysis represents some themes behind
the complaints such as “customer service,” “body shop repairmen,” “police re-
port,” “auto policy,” “claim adjuster,” “payments,” and “rental coverage”. We
also tracked the frequency of GEICO’s competitors in the data and observed
that Progressive, AllState, and State Farm are the top three high frequency
companies mentioned by the users. It seems that users compared GEICO with
these companies in the reviews.

2.3 Topic Discovery and Analysis

Although n-gram analysis provided insightful information about the complaints,
some combinations like “red light,” “parking lot,” and “phone calls” didn’t pro-
vide meaningful patterns. Therefore, we need to consider not only the sequence
of words but also the overall semantic in our corpus. To disclose another seman-
tic layer in our data, we looked at advanced text mining methods. There are two
text mining approaches: supervised and unsupervised. For detecting interesting
patterns, supervised techniques need training data, but unsupervised techniques
don’t require any manual effort [13,9]. Due to the large number of complaints
without having training data or manual label, we selected the unsupervised
approach in this research. Among different unsupervised text mining methods,
probabilistic topic modeling helps the topic discovery [14,15]. While several topic
models has been developed for different applications, latent Dirichlet allocation
(LDA) is the most widely-used topic model that has been employed in a wide
ranges of applications such as libraries [6], health [11,22], politics [10], and spam
detection [16,18,17]. This model assigns the words that are semantically related
to each other in a topic represented a theme [3]. For example in a corpus, LDA
assigns “gene,” “dna,” and “genetic” to a topic representing “genetic” theme
(Fig 1). LDA assumes that each topic is a distribution over words and each
document is a mixture of topics.

Fig. 1. Intuition Behind LDA [2]
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We used the MALLET implementation1 of LDA to find the topics of com-
plaints [12]. The complaints were imported in the MALLET format along with
removing the stopwords. To estimate the number of topics, we used the log-
likelihood analysis method to find the number of topics associated with the
highest log-likelihood [20]. The log-likelihood estimation indicated that the num-
ber of topics at 30 was the optimum point for soft clustering of the words. Table
2 shows the topic number and the detected words for each topic. Each labels
was selected based on the overall theme in a topic. For instance, “Rental Car
and Deductible” was selected as the label of words in topic 1 including “rental,
claim, pay, days, and deductible”.

After the topic discovery step, we annotated (labeled) 30 topics (Table 1). To
reach an agreement on the labels, the researchers compared notes and discussed
differences in their topics until an agreement was reached. Based on the labels,
we identified four categories for the annotated topics: Customer Service Related
Complaints (C1), Insurance Coverage, Paper Work, Policy, and Report Related
Complaints (C2), Legal Issues Related Complaints (C3), and Costs, Estimates,
and Payments Related Complaints (C4) (Fig 2).
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Fig. 2. Categories of Complaints

1http://mallet.cs.umass.edu/topics.php
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Table 1. Topics of Complaints

T# Topic Label
T1 rental claim pay days deductible claims collision damage

coverage cover
Rental Car & Deductible

T2 claim file person claims run find fraud accident com-
plaint investigator

Fraud Investigation

T3 quote policy agent online rate change price called higher
rep

Higher Price Than Quoted

T4 policy called payment paid bill asked cancelled received
monthly payments

Billed After Cancellation

T5 called claim adjuster received left number contact weeks
agent service

Numerous Calls for Claim Adjustment

T6 company people business money owner insured practices
action unfair lawsuit law

Lawsuit for Unfair Business Practice

T7 customer service representative gave customers mistake
continue loyal spoke poor

Poor Customer Service Attitude Toward
Loyal Customer

T8 shop repair body adjuster parts damage estimate dam-
aged replaced refused

Repair Payment and Adjuster

T9 police fault report accident light red turn stopped stated
damage

Police Fault Report of an Accident

T10 customer service company experience worst horrible ter-
rible rude cheap treated

Poor Customer Service

T11 total loss dollars worth totaled adjuster price offered sell
cash

Estimate for Totaled Vehicle

T12 damage front bumper door accident side hit lot parking
paint rear left

Damage in Parking Lot

T13 coverage full pay money bought customer liability save
service options

Coverage Options

T14 policy spoke explained good needed representative clear
issues information complete

Clear and Complete Policy/Info

T15 check called back weeks send paperwork months fax
wrong forward

Slow Paperwork

T16 information stated auto representative number provided
party companies requested correct

Auto Representative

T17 left attorney street office deal client completely lie wrong
showed

Court

T18 information claim weeks called contacted case response
woman handle uninsured

Uninsured Case

T19 back pay money day long wait hours making calls work-
ing

Long Waiting for Money Back

T20 asked called back supervisor wanted manager rude rep
speak customer

Rude Employees

T21 truck back fix drive collision problem month ago water
flood

Flood Damage

T22 accident medical pay pain bills totaled injuries hospital
horrible injury

Medical Costs

T23 account payment bank money card credit refund make
debit checking

Payments

T24 covered roadside assistance tire service problem towing
called tires gas

Roadside Assistance

T25 letter received state send coverage email mail dmv phone
address

Contact with DMV

T26 paid money stolen thing job months paying totaled life
hard

Payments in Hardship Situations

T27 policy son daughter driver added family driving wife
coverage husband

Add Family Member to Policy

T28 claim accident adjuster client made fault case liability
filed denied

Refuse to Pay a Claim

T29 years months record driving past give switched insure
great high

Not Considering Long-Term Driving
Record

T30 rates premium company policy increase year cost times
increased raised

Rate Increase
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The first category covers the topics related to the situations in which cus-
tomers contact customer service to ask a question(s), fix a problem(s), or get
help /information /quote, such as calling for claim adjustment in topic 5, but
they weren’t happy or satisfied after this process. This category includes inap-
propriate behavior of GEICO employees like in topics 7, 10, and 20. The second
category is related to insurance coverage directly, such as rental car service and
deductible issue in topic 1 and roadside assistant in topic 24, or indirectly, like
police fault report of an accident in topic 9. The next category includes the legal
cases such as the fraud detection in topic 2. Finally, the last category represents
the complaints related to money, including payments, such as charging a cus-
tomer account after policy cancellation in topic 4, estimates, such as giving low
estimates for a totaled vehicle in topic 11, and costs ,such as medical costs. The
map of topics on the four categories indicates that more than 60% of topics are
related to C1 and C2. This means that GEICO needs to invest more on cus-
tomer service and insurance coverage, paperwork, policy, and report to improve
the customer satisfaction.

3 Conclusion

Online review websites provide a platform for people to share their opinions
on different products and services. Previous studies showed that online reviews
are important for people and have direct impact on the growth and revenue of
insurance companies. Understanding the topics of complaints in the reviews can
help the insurance companies to improve their products and services. However,
analyzing a huge number of reviews is not an easy task for human.

This paper provides a computational content analysis approach to collect,
analyze, and visualize unstructured text data. Our research methodology de-
codes complaints in online reviews with low rating and can be applied to other
business applications. Our results showed that most of the topics were related
to customer service. The results from this study have practical implications
for numerous stakeholders that are in insurance and other industries, provid-
ing customer information to managers. Our future research studies will include
the complains of other insurance companies, such as AllState, Statefarm, and
Progressive, along with considering time and location variables.
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