Leveraging Heterogeneous Data Sources for Civil Unrest Prediction

Lu Meng, Rohini K. Srihari Department of Computer Science and Engineering, State University of New York at Buffalo lumeng@buffalo.edu, rohini@buffalo.edu

Introduction

Predicting significant societal events and generating early warnings is a challenging and critical problem since it involves multiple societal factors, including economics, politics, environment, and culture. Civil unrest prediction tasks have thus far relied on manually curated data sources and heuristic features determined by human expertise. Furthermore, current research focuses on machine learning approaches which do not effectively use heterogeneous data sources reflecting sequential data. In this paper, we propose a novel predictive framework which effectively exploits such data sources through LSTM networks. Extensive experiments have been conducted on 2 different datasets related to 2 countries to illustrate the effectiveness of our model.

Research Problem

Our goal is to forecast CU events counts by ingesting multiple data sources.

Suppose $X_t \in \mathbb{R}^n$ is a feature vector corresponding to a day t, where each entry $x_i \in \mathbb{R}^d$ of the vector contains the historical data from the previous d days, and $y_t + \Delta_t \in$ $\{0, \dots, k\}$ refers to the category indicating the number of events on the day of $t + \Delta_t$. We are trying to produce f:

Data Sources

Historical Data

 Gold Standard Reports (GSR) data sets provided by IARPA for the Mercury Challenge

Economic Indicators

• Commodity prices, unemployment rate, inflation rate, etc.

Table 1: Covariances between economic indicators and GSR event counts

	Indicator	Egypt	Jordan	Indicator	Egypt	Jordan
	Cotton	-9.83	-0.29	Gold	-2202.15	-228.08
	Rice	-741.70	-1.82	Natural gas	-21.12	7.22
	Wheat	-423.98	56.12	Iron ore	-431.48	1.17
	Maize	362.73	25.43	Copper	-26373.92	1470.69
	Sugar	-0.61	-0.24	Unemployment	58.64	-0.41

Social Media Data

- Political tweets from politicians and journalists.
- Daily volume and sentiment (percentage of angry posts) are then calculated

- From May 01, 2015 to January 08, 2019
- Ground truth data: GSR data for Egypt and Jordan
- Base rate model: ARIMA algorithm
- Performance evaluated according to Mercury Score (MS):

$$uality\ Score = 1 - \frac{abs(Predicted - Actual)}{max(Predicted, Actual, 4)}$$

$$dS = 1,000,000 * QS$$

Table 2: Comparisons of Mercury Scores for each evaluation period.										
	2018-08-01	2018-11-01	2018-11-01	2018-11-01	2018-11-01	2018-11-01				
	2018-10-31	2018-11-13	2018 - 11 - 27	2018-12-11	2018-12-25	2019-01-08				
			Egypt							
ARIMA	316479	269231	388889	390244	372727	362319				
$\operatorname{Cov-LSTM}$	798007	846153	787037	829268	831818	829710				
rekcahd	835015	836152	789545	772238	802162	806661				
valilenk	823034	788462	731481	762195	768182	778986				
			Jordan							
ARIMA	634114	1000000	888889	758608	730986	699858				
$\operatorname{Cov-LSTM}$	658532	647435	698765	680081	691060	699348				
rekcahd	521188	768555	679934	571972	615693	647649				
valilenk	378845	500000	515873	595238	612670	572817				

City level prediction

Figure 6: ROC curves of historical data based model on ACLED data for Cairo, Egypt.

Conclusions

We see promising results by including heterogenous data sources for predicting civil unrests and using LSTM models that effectively exploit sequential data. This work shows the possibility of leveraging existing data sets to provide predictions of civil unrest with sufficient lead time and granularity to be used in a deployed early warning system for effective resource allocation, safety and security planning and other decision making tasks.

Figure 5: Prediction accuracies on GSR data under different system settings for Egypt and Jordan

 Ground truth data: ACLED data for Cairo and Amman • Lack of data points

• One observation is that more false negative cases

than at country level