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Abstract. Cyberattacks are hazardous, and honeypot deception has been shown to be 

successful in combating them. Due to involvement of multiple factors in cyber 

situation, the adversary is likely to suffer from various cognitive biases. One of the 

many cognitive biases that affect adversarial decisions in cyberspace is confirmation 

bias. However, little is known about the cognitive mechanisms that drive confirmation 

bias in adversarial decision-making. To test for confirmation bias, one hundred and 

twenty participants were recruited via a crowdsourcing website and were randomly 

assigned to one of two between-subjects conditions in a deception-based 

cybersecurity simulation. Results revealed the presence of confirmation bias in 

adversarial decisions. Thereafter, a cognitive Instance-based Learning model was 

built involving recency, frequency, and cognitive noise to understand the reasons 

behind the reliance on confirmation bias. Results revealed that participants showed 

reliance on recent events and high cognitive noise in their decisions. We highlight the 

implications of our findings for cyber decisions in the presence of deception in the 

real world. 
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1 Introduction 

Cyberattacks are the adversary's deliberate attempts to disable computer systems. In 2021, there 

was a dramatic increase of 105% in ransomware attacks among the different cyberattacks [1]. 

This rise in attack activity encourages the research community to develop adaptive solutions to 

enable in creation of a secure cyberspace. There are certain security solutions available to assist 

in countering cyberattacks, such as intrusion detection systems (IDSs), filtering strategies, and 

firewalls [2-5]. IDSs generate alarms on the detection of any suspicious activity [2,3]. IDSs are 

reliable; however, they may also generate false alerts resulting in financial losses [5]. Filtering 

solutions help remove unwanted content while still ensuring secure access. This strategy may 

result in bounded nonrational network agents reaching consensus[5]. In general, such an 

agreement could help detect cyberattacks before they become a hazard to cyberinfrastructure [5]. 
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Firewalls also monitor network traffic and restrict incoming and outgoing packets as per 

established security policies [6]. However, these firewalls are not intelligent enough to 

distinguish between genuine authorized access and a malicious attempt[6]. Overall, these 

solutions might not be able to help in combating newer cyberattacks. 

Cyber deception has been proven to be an effective way of combating cyberattacks [4]. The 

aim of cyber deception is to incorporate human factors into consideration in cyber circumstances 

and improve security tools to minimize cyber-attacks [4]. Cyber deception has been used with 

the help of honeypots, which appear as real systems [7]. This technique has been found to be 

effective in the detection and response to cyberattacks [8-10]. Recent research in the behavioral 

cybersecurity domain has focused on technological factors that drive adversarial decisions in 

cybersecurity. Some of them include network topology, timing and amount of deception, network 

size, and honeypot proportions [10, 11]. Aggarwal et al. [10] investigated the impact of timing 

and amount of deception on adversarial decisions, revealing that late deception increased the 

proportion of honeypot attacks when compared to early deception. Similarly, Katakwar et al. [10] 

investigated the impact of various network sizes on adversarial decisions in cyberspace. Besides 

these elements, adversarial decision-making is likely to be influenced by a set of predetermined 

adversarial strategies. These strategies might be convincing and efficient in a simplified view of 

the real world, but when applied in a real situation, the adversary may become prone to certain 

cognitive biases [12]. As a result, it is essential to investigate the role of cognitive biases in the 

adversary's decision-making. 

Researchers have discovered that adversarial decisions in cybersecurity scenarios may suffer 

from cognitive biases such as confirmation bias, anchoring bias, sunk-cost fallacy, irrational 

escalation, loss aversion, and others [12,13]. Among these biases, confirmation bias, the tendency 

to select options that support one's own belief from a pool of information, has affected a majority 

of adversarial decisions [14]. However, research is yet to investigate how cognitive elements 

such as memory decay and cognitive noise aids in suffering from cognitive bias in adversarial 

decisions. One way of understanding the cognitive elements in dynamic environments is by 

building cognitive models based upon Instance-based Learning Theory (IBLT) [15-17]. 

Previously, IBLT-based cognitive models were able to explain the reason for adversarial 

decisions in various cyber situations [11,18].  

The purpose of this research is to understand the cognitive factors that drive adversaries 

towards confirmation bias in cyber situations by computational cognitive modelling. First, we 

create a deception-based security game to study the presence of confirmation bias and build a 

cognitive model based upon IBLT that could account for adversaries' decisions. Hence, we 

developed a deception-based security game as a simulation environment and replicated real-

world cybersecurity circumstances. We used a sequence of deception trials followed by non-

deception trials and vice versa (non-deception trials followed by deception trials) in the game to 

check if the adversaries revealed confirmation bias. In the non-deception trial, the response from 

the network remains true, whereas in the deception trial the response from network is opposite to 

that of actual. If an adversary faces a non-deception trial before experiencing deception trial, the 

adversary develops a belief that the network's response is true. Thus, when the adversary 

transitions from a non-deception trial to a deception trial, the adversary will rely on confirmation 

bias and most likely target those webservers whose response is “regular webserver”, but in 

reality, are “honeypot webserver”. Similarly, if the transition happens from a deception trial to a 

non-deception trial, then the adversary builds a belief of a deceptive network, which 
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communicates a “honeypot webserver” as a regular webserver”. Thus, when the adversary 

transitions to a non-deception trial with her deceptive belief, the adversary would be driven by 

confirmation bias and attack honeypot webservers. Hence, we expect that participants are likely 

to suffer from confirmation bias whenever they transition from a deception to a non-deception 

experience or vice-versa. First, we provide a brief overview of a deception-based game. 

Thereafter, we discuss an experiment, where we investigate whether adversarial decisions suffer 

from confirmation bias. Following that, we present the results of the experiment. Furthermore, 

we describe the results of cognitive models based upon IBLT, which attempt to account for 

human decisions in the experiment. Finally, we talk about the real-world implications of the 

developed cognitive models. 

2 DECEPTION GAME 

Deception Game (DG) is a web-based game in which an adversary and the network play 

against each other [19]. It is expressed as DG (n, k, γ), where n denotes the number of webservers 

in the network, k represents the number of honeypots, γ depicts the number of probes the 

adversary makes before attacking the network. The DG had two kinds of webservers, regular and 

honeypot. The regular webserver is a real system in the network, whereas the honeypot is a fake 

system in the network. A trial in DG has two phases, a probe phase followed by an attack phase. 

In the probe phase, the adversary can probe some of these webservers or may not probe any of 

them. Probing in DG means clicking the button which denotes the webserver in the game's 

interface. In the probe phase, the adversary receives the information from the network based upon 

deception and non-deception trial. In deception trial, the network response is opposite to that of 

the actual. However, in the non-deception trial, the network’s response is same as that of actual.  

In the attack phase, the adversary may attack one of the webservers present in the network. 

Attacking a webserver in the DG means clicking on the button denoting a webserver in the 

network. After the adversary has made his decisions in the probe and attack stages, the adversary 

moves on to the feedback screen, where the rewards for the probe and attack stages of the DG 

are revealed. Table 1 below shows the payoffs for players for the probe and attack actions in the 

DG.   

Table 1. Hacker's payoff during probe and attack stages. 
Stage Hacker's action Payoff 

Probe 
Regular webserver +5 

Honeypot webserver -5 
No probe 0 

Attack 
Regular webserver +10 

Honeypot webserver -10 
No attack 0 

3 METHODS 

3.1 Experiment Design 

A total of 120 participants were recruited from crowd-sourcing website called Amazon 

Mechanical Turk for the study, and they were randomly assigned to one of the two between-
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subject conditions (each condition with 60 people). Each condition possessed a different 

sequence of deception and non-deception trials. Across both the conditions, the DG was 

configured as DG (20, 10, 10), where there were 20 webservers in the network, 10 of them were 

honeypot webservers, and the adversary got the option to probe 10 times before attacking the 

network. One of the two conditions had the first five trials as deception followed by non-

deception (referred to as the D-N condition). In contrast, the other condition had the first five 

trials as non-deception followed by deception (referred to as the N-D condition). Table 2 shows 

the pattern of deception and non-deception trials across the D-N and N-D conditions. 

Table 2. The sequence of deception and non-deception across the trials in D-N and N-D conditions. 

Trial D-N N-D 

1-5 Deception Non-deception 

6-10 Non-deception Deception 

11-15 Deception Non-deception 

16-20 Non-deception Deception 

21-25 Deception Non-deception 

26-29 Non-deception Deception 

 

In the experiment, the participant could take one of the three attack decisions (regular attack, 

honeypot attack, and not attack) in the probe and attack phases. In both the conditions and across 

all the transition trials (i.e., change in the trial from deception trial to non-deception trial or non-

deception trial to deception trial), whenever the participant attacked the honeypot webserver, it 

showed the presence of confirmation bias in the adversarial decisions. In the D-N condition, the 

deception trial makes a belief in the adversary about the incorrect information from the network. 

Hence, when the transition happens from deception trial to non-deception trial, the adversary 

with the deceptive belief in the non-deception trial gets trapped by attacking a honeypot 

webserver. Since, in the non-deception trial, the response from the network is true. Similarly, in 

the N-D condition, the adversary forms a belief of a true response from the network. Once the 

transition happens from the non-deception trial to the deception trial, the adversary with the true 

belief gets trapped by attacking those honeypot webservers, which acts as regular webserver in 

the probe phase. Across the transition trials in both the conditions, participants who attacked 

honeypot webservers were found to have confirmation bias in their decisions. Hence, we labeled 

participants attacking honeypot webservers as "1" (confirmation bias) and those attacking regular 

webservers or not attacking the network as "0". The average of 1s and 0s gave the proportion of 

participants suffering from confirmation bias. 

3.2 Stimuli 

Figure 1 presents the probe stage's interface in the DG. It shows how participants were 

briefed about the task and the availability of various types of webservers in the network. 

Thereafter, the participant performing as an adversary may probe some of the webservers in 

the network or may not probe any. Thereafter, the participant proceeds to the attack phase. 

During the attack phase, the participant chooses to attack one of the network's webservers 

(see Figure 2). After that, the participant is awarded for the decisions made during the probe 

and attack stages (see Figure 3). 
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Fig. 1. Initial screen in the probe stage of DG. 

 

3.3 Participants 

The study was conducted after the approval from the Ethics Committee of the Indian Institute of 

Technology Mandi (IITM/DST-ICPS/VD/251). Participants were recruited via a crowdsourcing 

website called Amazon Mechanical Turk [20]. 73% were males, while the remaining 27% were 

females. The age of the participants varied from 19 to 54 years (Mean = 31 years; Standard 

deviation = 6 years). 94% of the participants possessed a college degree, while the remaining 

participants did not have a college degree. On successful completion of the study, participants 

were renumerated with INR 50 (USD 0.67). After the completion of study, one among the top-

three scorers of the study was rewarded with gift voucher of INR 500 (USD 6.69). 
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3.4 Procedure 

Participants performing as adversaries were instructed about their goal in DG and were informed 

about the remuneration for their participation in the study. In addition, they were also instructed 

about the presence of deception trials in the DG. Also, they were asked to increase their score 

over the trials in the DG in probe and attack stages. Once the study was over, the participants 

were renumerated and thanked for their participation. 

3.5 Results 

We performed a single sample t-test to compare the proportion of participants with confirmation 

bias across the different transition trials of D-N and N-D conditions. In D-N condition, the 

proportion of participants suffering from confirmation bias was significantly higher compared to 

the unbiased proportion (33%) for the following trials (see Figure 4): trial 6 (t (59) = 2.612, p < 

.05), trial 11 (t (59) = 2.612, p < .05), trial 16 (t (59) = 3.947, p < .001), trial 21 (t (59) = 2.357, 

p < .05), and trial 26 (t (59) = 2.869, p < .01). Similarly, in the N-D condition, the proportion of 

participants suffering from confirmation bias was significantly higher compared to the unbiased 

proportion (33%) for these trials (see Figure 5): trial 6 (t (59) = 3.397, p < .001), trial 11 (t (59) 

= 3.131, p < .01), trial 16 (t (59) = 3.947, p < .001), and trial 26 (t (59) = 3.131, p < .01). However, 

for the trial 21 in the N-D condition, there was no significant difference between proportion of 

participants with confirmation bias and the unbiased proportion (0.33) (t (59) = 1.853, p = .069). 

4 IBL MODEL 

IBLT is a theory of decisions from experience in complex scenarios [15-18, 21]. As per prior 

research, cognitive models based upon IBLT have accounted for human decisions in different 

dynamic situations. An instance is an IBL model (based upon IBLT) consists of a situation, 

decision, and utility triplet. The situation in the instance corresponds to the current situation. The 

decision in the instance denotes the action taken in the current situation, and the utility refers to 

the outcome received in the current situation. When a decision is to be made, instances for the 

option are recalled from memory. These instances are then blended. The blended value for the 

option j in trial t is denoted as: 

𝑉𝑗,𝑡 =  ∑ 𝑝𝑖,𝑗,𝑡𝑥𝑖,𝑗,𝑡

𝑛

𝑖=1

 

where, pi,j,t is the probability of retrieval of the instance i for the option j in trial t, which is 

proportional to the instance’s activation; xi,j,t  denotes the utility value, for instance, i  for the 

option j in the tth trial of the experiment. The above equation calculates the blended value for 

each option which is the weighted product of observed outcomes and the probability of recalling 

the instances containing those outcomes. In each trial of the experiment, the model chooses the 

option with the maximum blended value. The activation of an instance is computed using the 

following equation: 
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𝐴𝑖 =  ln ( ∑ (𝑡 − 𝑡𝑝,𝑖)
−𝑑

𝑡𝑝,𝑖∈{1,…,𝑡−1}

) +  𝜎 ∗  ln(
1 − 𝛾𝑖,𝑡

𝛾𝑖,𝑡

) 

In the above equation, d and σ are the free parameters known as memory decay and cognitive 

noise. respectively; t is the current trial; tp,i denotes the previous trial in which the outcome with 

instance i occurred, and γi,t depicts the random number chosen from the uniform distribution 

between 0 and 1.   

 The decay parameter d is used to account for reliance on recent information. The higher the 

value of the d parameter, the greater the dependence on recent information and the faster the 

memory degradation. The parameter accounts for the variance in instance activation from one 

trial to the next. The model's instance structure was made up of the webserver decision, ground 

truth, and utility value associated with it. In the IBL model for an adversary, the webserver 

decision in the instance denoted the webserver number probed or attacked by the adversary. The 

ground truth represented the type of webserver the opponent investigated or attacked, i.e., regular 

and honeypot. The third attribute of the instance structure in the model was utility value referred 

to the reward linked with the adversary's decision and the ground truth for the decision (see Table 

1). 

4.1 Calibration of model parameters 

We obtained the calibrated value of d and σ using human data for different experimental 

conditions. In the IBL model, we aimed to minimize the average Mean Square Deviations (MSD) 

of decisions between humans and models across the transition trials. The average MSD is the 

aggregate of MSDs for different attack decisions (regular webserver attack, honeypot webserver 

attack, or not attack) in transition trials. The MSD for attack decision is defined as, 

 

𝑀𝑆𝐷 =  
1

5
∑ (𝑚𝑜𝑑𝑒𝑙𝑡 − ℎ𝑢𝑚𝑎𝑛𝑡)2

𝑡∈{6,11,16,21,26}

 

where t denotes the transition trials (where switch happens from deception to non-deception or 

non-deception to deception). The modelt and humant depict model and human decisions in the 

transition trial t for different attack decisions, respectively. If the value of the average MSD was 

small, then better is the model's fit to human data. The values of d and σ parameters for both 

model participants were optimized using the Genetic Algorithm, an optimization algorithm. This 

optimization algorithm utilizes bio-inspired operators such as mutation, crossover, and selection 

to create better solutions for optimization problems. The crossover and mutation rates in the 

genetic algorithm (GA) were set at 80% and 1%, respectively. The GA stopped when there was 

no change in MSD for a successive of 20 generations. 

4.2 Model Results 

Table 3 shows the average MSD and calibrated values of the free parameters (i.e., d and σ) in 

both conditions. In both conditions, the cognitive noise and decay were quite high, showing 

variability and recency in decisions. In addition, the model was able to predict human decisions 

across both conditions very accurately. 
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Table 3. Model parameters and average MSD value across the two conditions. 

Condition Memory decay (d) Cognitive noise (σ) Average MSD 
D-N 2.71 7.49 0.002 
N-D 3.10 7.61 0.002 

 

Figure 4 denotes the proportion of participants with confirmation bias across the different 

transition trials in the D-N condition in DG. 

 

Fig. 4. Proportion of participants with confirmation bias confirmation bias across different transition trials 

in the D-N condition. 

Figure 5 denotes the proportion of participants with confirmation bias across different 

transition trials of the N-D condition in the DG. 

 

 

Fig. 5. Proportion of participants with confirmation bias across transition trials in N-D condition of DG. 

5 DISCUSSION AND CONCLUSION 

Cyberattacks are threatening and they require intelligent security solutions for countering them. 

Deception via honeypots is likely a viable solution to counter cyberattacks. Cyber deception has 

helped in improving cyber defense, where the adversary has been found to be vulnerable to 

different cognitive biases.  

First, we discovered that when participants transitioned from a deception to a non-deception 

trial, they exhibited confirmation bias by attacking more honeypot webservers in the network. 
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This is because, while switching from a non-deception trial to a deception trial, the adversary in 

earlier trials acquired true information while probing a webserver in the network. This gave the 

adversary the notion of no deception in the network. As a result, in a deception trial, the adversary 

made decisions based on the same belief and attacked the honeypot webserver. However, during 

the transition from a deception trial to a non-deception trial, the adversary on probing webservers 

received false information, leading to a deceptive belief. Hence, the adversary decided to make 

inverted decisions, and with this belief, the adversary exhibits confirmation bias and attacked 

more webservers which resemble to be regular webservers but were actually honeypot 

webservers. Furthermore, participants showed high cognitive noise and memory decay in both 

conditions. The high cognitive noise indicates that participants' decisions varied from trial to trial, 

while the high memory decay indicates that they did rely on recent events. One possible 

explanation for these results is that the adversary received inconsistent replies from the network 

as a result of the transitions of deception and non-deception trials in a short span of time. This 

baffled the adversary, prompting him to make arbitrary decisions based on pre-existing 

assumptions. Furthermore, adversaries relied upon the most recent experiences to make decisions 

exhibiting confirmation bias. 

Our findings are limited because they are based on a laboratory experiment. Thus, some of 

the findings should be interpreted in that light. Conditions in real-world cybersecurity scenarios 

may differ from those in a lab-based experiment. However, participants had no prior knowledge 

of what trials possessed deception in DG. They were also unfamiliar with the mapping of 

honeypots and regular webservers in DG, which was done randomly in each trial. Some of these 

characteristics may resonate with real-world cybersecurity situations. One application of the 

developed cognitive model is that it might be useful for penetration testing to find exploitable 

vulnerabilities. In addition, the developed model can assist in generating predictions on the 

proportion of confirmation bias in other unexplored sequences of deception and non-deception 

trials. In future studies, we intend to study how the length of deception and non-deception trials 

affects adversary decisions in cybersecurity circumstances. In addition, we would like to 

investigate the presence of other cognitive biases in adversarial decisions in complicated and 

dynamic cybersecurity circumstances. Following that, we intend to create cognitive models to 

aid in our understanding of the various cognitive elements that affect adversarial choices in 

cybersecurity situations. 
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