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Abstract. The growing importance of social media platforms in shap-
ing the common narrative necessitates a better understanding of how
agents interact with and affect the online information environment. Our
work investigates how agents within a network build influence over time
via sequenced messaging within a social media platform. Utilizing net-
work analysis and the BEND analytical framework, we build a predictive
model for influence campaign components, with the goal of identifying
the most effective counter-messages to disrupt and defray malicious mes-
saging campaigns online.
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1 Introduction

Social media constitutes a significant part of the common narrative in informa-
tion age society [5] [6]. The communication, connection, and influence stemming
from social media platforms exert an undeniable influence on the behavior and
decisions of individuals, groups, and of society as a whole - often negatively.
Social media-derived information has augmented and, in some cases, supplanted
the “common narrative” previously the purview of print media and in-person
social circles.

Because of this, the perils of misinformation on social media are significant.
Ignorant or malicious messages can spread untruths or misleading information
with much greater reach than previous narrative mechanisms allowed. The result
is widespread vulnerability of social mechanisms, as individual, group, and social
understanding can be malformed or controlled by a smaller group of entities than
ever before[4].

Identifying and countering the spread of misinformation on social media plat-
forms is a difficult task, and, given the size of the user base, it must be at least
partially automated if there is to be any success in real-time moderation and
correction. The difficult and interrelated problems of identifying misinformers,
detecting misinformation, and counteracting misinformation are all rich areas
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of research as social leaders and social media platforms struggle to preserve the
utility of this new narrative mechanism [3].

Recent work has shown promise in identifying agents exerting outsize influ-
ence on a social media network [7]. Accompanying research can be leveraged to
match these agents’ influence to potentially malignant or harmful narratives [1].
In combination, these tools can provide an early warning for narrative monitors
against parties who may be subverting or eliminating productive dialogue. How-
ever, how to react remains an open question. The design and implementation of
effective interventions is an open interdisciplinary problem.

Our research aims to answer a small but crucial component of this ques-
tion: when should information interventions be implemented? Moderators cannot
simply counter all potent narrative voices (as identified by the previously men-
tioned methods), as such would represent censorship and would ultimately sup-
press genuinely popular and useful viewpoints within the medium. On the other
hand, waiting too long to intervene enables harmful narratives to become estab-
lished and to propagate, potentially removing any ability to effectively counter
them. We hypothesize that there exists an ideal moment or range of moments
in the evolution of an influencer’s communication, where a timely intervention
can defuse the specific influence of a harmful narrative without hampering the
natural and healthy development of useful narratives.

2 Background

The spread of influence through social networks, both online and offline, has
been thoroughly explored in past research [9]. Scholars have demonstrated the
utility of quantifying an entity’s reach and influence within a network by ana-
lyizing the network itself: network metrics derived from graph theory reliable
link the potential effect of an agent within a network to that agent’s position
within the network, and to the structure of the network itself. If we can build a
reasonably accurate model of a network, the analysis of that model can provide
a quantifiably reasonable measurement of individual influence within the mod-
eled community. We will utilize a similar approach in this paper as we seek to
evaluate the "success" of a user’s message campaign.

There is much less published work addressing a larger challenge: measuring
the cumulative effect over time of many interrelated social media actions. Wei
and Carley, among others, have pioneered work to analyze dynamic social net-
works, examining individual agents’ behavior to identify significant deviations
or alterations. [10] Such approaches convert static measures of network influ-
ence into time-aggregated measures of dynamic activity. Our approach will be
significantly simpler, but based on similar reasoning.

An equally daunting challenge is sufficiently quantizing a user’s messages
to enable quantitative analysis of their effect. A would-be influencer could say
or post an endless list of things, each with different content, timing, tone, and
scope. All of these communications contribute in subtle and complex ways to the
net influence that user builds on the platform, and because of this, the potential
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feature space for modeling an influence campaign is intractably massive. To
address this dilemma, we utilize the BEND framework developed by Carley and
Beskow [2]. BEND provides a compressed quantizing framework for social media
actions, mapping message text onto a discrete set of influence "maneuvers" that
capture the possible outcomes an influencer may wish to achieve relative to the
social network structure and the narratives therein. BEND reduces the nuance
and complexity of social media communication to enable categorical analysis.
The BEND framework simplifies the study of activities in a multi-agent multicast
channel by reducing messages to maneuvers, enabling rigorous and repeatable
analysis of content that is otherwise highly variable and subjective. This, in
turn, allows us to effectively predict the influence-building effect of a set of BEND
maneuvers; in essence, through BEND, we can develop a "small language model"
that predicts or dictates the general form of an influence campaign.

3 Methodology

An agent attempting to influence a network and/or a narrative will do so through
a campaign of actions: interrelated, sequenced interactions designed to cumula-
tively produce the desired change in the network/narrative. Using the BEND
framework, we reframe an influencer’s interactions as a time-sequenced series of
BEND maneuvers. We can then evaluate the immediate and cumulative impact
of each maneuver to identify the moments of greatest achieved effect relative to
the influencer’s goal. Such moments represent the “main effect” that moderators
would seek to preempt through intervention. We can also try to identify moments
in the early sequence when the influencer’s campaign is distinct enough to be
identified, but has not yet achieved maximum impact. These moments are “main
targets” for intervention, as they represent a happy medium between knee-jerk
censorship and just-in-time action.

3.1 Data Collection and Preprocessing

Our study utilized Twitter data drawn using search terms focused on highly
polarized, binary discussions. In choosing our data, we sought influencers who
were oriented to our topic, who demonstrated a reasonable amount of reach or
influence (but not a global or super-star level), and who we can assume are
actively trying to sway the narrative and/or shape the network. By reducing
Tweets based on time and topic, and identifying users who initially used hashtags
that would become more widespread, we reason that our resulting targets meet
our selection criteria.

3.2 Data Collection and Preprocessing

Our study utilized two datasets: one focused on the Russian-Ukraine conflict
and the other on the COVID-19 pandemic.
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Russian-Ukraine Conflict Dataset: We collected over 4.5 million Tweets
from February 11 to August 30, 2022, using search terms related to the conflict.
Influencers were identified based on their engagement with relevant hashtags and
demonstrated influence.

COVID-19 Pandemic Dataset: This dataset includes Tweets from 2019
to 2020, focusing on US debates about COVID-19 lockdowns and reopening local
businesses. We filtered Tweets to those discussing the "re-open" debate in key
states.

To ensure the quality and uniformity of our datasets for analysis, we employed
a comprehensive preprocessing pipeline. This included tokenization of tweets to
dissect textual content into analyzable elements, standardization of text formats
for consistency, and removal of irrelevant terms and known stop words focusing
on substantive content. This preprocessing facilitated more effective analysis and
enhanced the accuracy of our natural language processing tasks.

3.3 Describing an Influence Campaign

Upon identifying key influencers, we collected their authored Tweets to determine
the composition of their influence campaigns. Assuming that all messages sent
by these target users were part of their deliberate attempt to build network
influence, we used Netanomics’ NetMapper software to extract semantic features
from the text. We then used Netanomics’ ORA network analysis tool to assign
BEND labels to each message.

This classification assigns specific BEND maneuvers to each Tweet, such as
"boosting" favorable narratives or sowing "dismay" among opposition. A Tweet
can contain multiple maneuvers, so we can re-imagine each communication as
a variable-length tuple of symbols drawn from the BEND "alphabet." Figure 1
below shows the frequency of each BEND maneuver within the dataset.

We also considered the temporal clustering of Tweets to describe the influence
campaign accurately. If the time elapsed between two consecutive Tweets from
the same user was too large, we treated the second Tweet as the start of a new
influence campaign. This approach ensures that our analysis reflects coherent
sequences of influence attempts rather than sporadic activity. This method was
applied consistently to maintain the integrity of our influence campaign analysis.

3.4 Measuring an Influence Campaign

As previously described, we use network metrics to measure the "success" of
our targets’ respective influence campaigns. Crucially, we avoid a measurement
scheme that would incorrectly attribute any network metric to any specific mes-
sage, as that grossly oversimplifies the phenomenon we are studying. Instead, we
build our metrics with the goal of identifying cumulative impact over the course
of a campaign. Toward that end, we focus on the change in metrics surrounding
each tweet, rather than the value of the measurement.

Our constructed network is a bimodal directed graph, built of connections
between users and tweets based on the observable propagation of messages within
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Fig. 1. BEND Maneuver frequency within the dataset. Green bars are Pro-Ukraine
occurrences; red bars are Pro-Russia.

the dataset. We use two different measures of centrality when measuring our
targets’ influence within this network: the in-degree centrality, or number of
connections pointing to the user; and the out-degree centrality, or the number
of connections pointing away from the user. These metrics, considered together,
provide different measures of a node’s importance in the graph. We also consider
each user’s ego network, a subsection of the graph that captures the sub-network
directly visible to that user. We measure the density of this network as a way
of tracking how immediately impactful the user is on the graph structure, as
any attempt to create or dissolve social groupings would be most obvious in
the user’s ego network. As an additional metric, we record the engagement each
Tweet receives in the form of retweets and/or quotes. This measure is not as
effective at conveying cumulative impact, but is still a useful measurement for
identifying particularly successful phases of a campaign.

To derive our metrics, iterating through our targets, we collected all their
authored tweets. Then, for each tweet, we captured the time stamp t and con-
structed two networks: one from all the tweets up to t, and one from all the
tweets up to time t + δ. We then measured the in- and out-degree centrality of
these two networks and took the difference between them. That difference was
assigned to the pivot tweet as its metric score. We reason that the contents of
the tweet at time t were, at least partially, responsible for subsequent changes
in the network. By comparing the network at the time of the message to the
network some time δ afterward, we quantify and capture that induced change.

Examples of the resulting metrics are shown in Figure 2. We plot derived
values in tweet-order, showing the change in the measured values over the run of
the sequence. Effectively, our influence campaign metrics display the first deriva-
tive of the actual network characteristic, with respect to the target influencer’s
messages.
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Fig. 2. Example user metrics over time.

3.5 Modeling and Prediction

Having defined our features and our metrics, we next attempted to model the
system at play. We chose a random forest regression model, since our array of
16 binary features are likely to have non-linear effects on the final metric values.
Our model had unlimited tree depth and contained 100 different estimating
trees. To train our model, we excluded one user’s tweets from the data, and
cross-validated on the remaining tweets to identify the best model parameters.
We compared models using the Friedman-corrected mean squared error as our
scoring function.

We then tested the trained model against the excluded user. We repeated
this process for each user, predicting that user’s influence metrics from all other
users’ tweets, and took the average of all model coefficient of determination R2

scores to indicate the overall success of our method. We repeated this process for
each metric separately, as well as training a multivariate-outcome model against
all metrics simultaneously.

4 Analysis and Follow-on

Our model results are given in table 1. As mean-squared error is a positive value,
the listed median and standard deviation represent a one-sided distribution.
We give the median to provide resilience against outliers, as many models had
wildly inaccurate predictions early in the sequence before rapidly converging
toward the actual series values. The model score value R2 listed has a maximum
value of 1.0, indicating a perfectly predictive model; negative scores indicate
arbitrarily incorrect predictions. [8] Figures 3 and 4 show examples of a best-
model prediction versus a single target user. The solid line is the difference
between the single-metric predictive model and the measured value; the dotted
line is the difference between that metric in the multivariate model and the
actual value.
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Table 1. Summary of Metrics Across Different Parameters.

Metric Measure Mean value Median value Std. Deviation
Tweet
engagement
(x1)

Raw value 200.9k 4.9k 451.7k
Model avg -1.626 -1.215 1.144
Best model 0.015 0.02 0.085

In-degree
cent. (x2)

Raw value 4.01e-9 0.05e-9 15.36e-9
Model avg 0.85 0.86 0.025
Best model 0.976 0.977 0.008

Out-degree
cent. (x3)

Raw value 1.492e-9 0.277e-9 3.305e-9
Model avg 0.186 0.194 0.518
Best model 0.983 0.99 0.012

Ego-net
density (x4)

Raw value 2.083e-3 0.479e-3 3.281e-3
Model avg 0.2 0.246 0.146
Best model 0.799 0.77 0.072

Results
vector (x)

Raw value 42.4k 2.4k 84.2k
Model avg -5.147 -0.777 12.13
Best model 0.334 0.326 0.058

Fig. 3. Prediction error for in-degree centrality, for a sample user, for single-variable
(solid) and multi-variable (dotted) models.

Fig. 4. Prediction error for out-degree centrality, for a sample user, for single-variable
(solid) and multi-variable (dotted) models.
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Our results varied widely across our influence metrics. Notably, our poorest
performance was in metric 1, Tweet Engagement. Crucially, this metric was the
only non-comparative measurement (i.e. it measured directly from a tweet at
time t rather than capturing an effect accumulated over time interval [t, t+ δ]).
We hypothesize that this "instant response" characteristic made our inherently
autocorrelative approach ill-suited to predict that metric.

Our models were similarly underwhelming for metric 4, Ego-net Density. This
warrants further investigation, as there may be systemic issues with how we
generate and evaluate ego networks from our truncated Tweet corpus. However,
it may also be the case that agents have significantly less direct control over their
ego networks than we might have expected. In other words, an agent’s influence
attempts may more heavily impact the larger network, which then shapes the
agent’s ego network, an inversion of our working theory.

We saw success in predicting change in network centrality based on BEND
maneuvers. Our best models averaged scores of 0.976 and 0.983 for in- and out-
degree centrality respectively, very near the highest possible score of 1.0. As seen
in the example figures, some perturbations persist throughout the sequence, in-
dicating instances where the model failed to correctly predict sequence behavior.
Crucially, though, the model correctly predicted the direction of influence change
for 97.5% of data points for centrality metrics, and 98.4% for egonet density. So,
while the model may often overestimate the size of an effect, it is highly accurate
at predicting whether a sequence will result in a gain or a loss of influence.

Our research has demonstrated a promising avenue for decomposing and
better understanding online influence campaigns, a vital first step in effectively
countering malicious influencers. To expand on our work, we plan to incorpo-
rate similarly processed campaigns from other cultural, topical, and temporal
settings, to investigate how resilient our modeling approach is to changes in
communication style or topicality. We also plan to investigate whether other,
more effective success metrics can improve our accuracy, by folding our directed
bimodal graph into an undirected unimodal graph. While this discards some
of the network’s nuance, it facilitates the use of many more network metric al-
gorithms. Finally, we plan to investigate additional features that may better
inform our model’s predictive power, including adding a time-delay feature to
each tweet measuring the elapsed time between messages.

Applying our research to the root problem - intervening to derail malicious
influence campaigns - is now in reach. With the trained model, a user can con-
truct a set of all possible maneuver combinations (216 possibilities) and have the
model evaluate them. The user can then select the best-scoring combination to
increase their influence, or the worst-scoring combination to reduce it.

However, such application still faces several hurdles. Chief among these is
the difficulty of conducting a controlled experiment that accurately models the
widespread and multi-layered nature of online social media platforms and at-
taining influence therein. We expect very limited capability to use our research
(as presently constituted) to craft and deploy media interventions, due to the in-
complete nature of our work and the ethical restrictions inherent to such actions.
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Finally, even if we can estimate which maneuver combination will best reduce a
target’s influence, it is unclear if that maneuver combination will have the same
effect when produced by a third party as opposed to the agent themselves.

We plan to combine our research with ongoing efforts to develop robust and
complex agent-level simulations of social networks. Our models can be tested in
such an environment by dictating an agent’s strategy as they attempt to affect
the network and the narrative. And, we can test the intervention strategy efficacy
in this setting to investigate whether third-party influence "attacks" follow the
same predictive patterns.
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