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Abstract. Low trust in autonomous systems remains a significant bar-
rier to adoption and performance. To effectively increase trust in these
systems, machines must perform actions to calibrate human trust based
on an accurate assessment of both their capability and human trust in
real time. Existing efforts demonstrate the value of trust calibration in
improving team performance, but overlook the importance of machine
self-assessment capabilities in the trust calibration process. In our work,
we develop a closed-loop trust calibration system for a human-machine
collaboration task to classify images and demonstrate about 40% im-
provement in human trust and 5% improvement in team performance
with trained machine self-assessment compared to the baseline, despite
the same performance level between them. Our trust calibration system
applies to any semi-autonomous application requiring human-machine
collaboration.

Keywords: Machine Self-Assessment · Trust in AI · Autonomous Sys-
tems.

1 Introduction

Low trust in autonomous systems remains a significant barrier to adoption and
performance, especially in high-stakes, safety-critical missions. A clear signal of
this problem is the high frequency of human takeover events when the system’s
behavior does not match human expectations, or the human is insufficiently
confident in its situational understanding. In this work, we develop a closed-loop
trust calibration system that improves trust via reliable machine self-assessment
to proactively align human trust with machine capability in real time.

The contributions of this work are three-fold: (1) Developed a closed-loop
trust calibration system that leverages real-time trust prediction, machine self-
assessment, and a dynamic reasoning model that determines the best machine
action for trust calibration. (2) Empirically compared cumulative trust of hu-
man subjects in machines with learned self-assessment to those that lack it.
(3) Developed a paradigm to rigorously assess the effects of trust modeling and
self-awareness in machines on human trust for operationally relevant contexts.
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2 Prior Work

Early work in trust calibration focused on transparency, which involved consis-
tently offering uncertainty information, confidence estimates, or system reliabil-
ity to encourage appropriate trust in the machine [9][15]. More recently, efforts
shifted to adaptive trust calibration, where the system either selectively deter-
mines when to provide information to the user to calibrate trust (e.g., when a
human exhibits over- or under-reliance), or uses information about the user to
adapt its behavior. Adaptive trust calibration efforts are of wide interest since
having the human continually monitor information cues can increase workload
[8] [1], and adaptation allows for personalization to the individual. Here, we
highlight some recently developed adaptive trust calibration systems relevant to
his paper. See [13] for a recent survey on trust calibration.

[10] developed a framework for offering trust calibration cues when over- and
under-trust were detected. Over-trust occurs when the human incorrectly be-
lieves the machine will perform the task better, and under-trust happens when
the human falsely believes the machine will perform worse. They found that
adaptively offering cues (visual, audio, verbal, etc.) improved trust calibration
and team performance. [5] presented Pred-RC to adaptively select when to pro-
vide reliance calibration cues, where reliance is considered an observable trust-
related behavior. If Pred-RC determined that the probability of reliance is higher
with the cue than without and the probability of machine success is high, the
cue is shown to encourage reliance. Pred-RC reduced the number of cues needed
while avoiding over/under-reliance on the machine.

[2] learned a Partially Observable Markov Decision Process model that used
inferred trust values to determine what robot actions would maximize team per-
formance. In a table-clearing task, the robot learned to build human trust by
clearing low-risk objects (high-risk objects) when trust was low (high). [1] devel-
oped a POMDP that modeled the effects of automation reliability, transparency,
scene complexity, gaze behaviors, and reliance on human trust and workload dy-
namics in Level 2 driving scenarios. The model was leveraged to use current
human trust and workload levels to calculate the optimal level of system trans-
parency necessary to calibrate trust in real time.

We model our own experiments after [7], which investigated trust calibra-
tion, compliance, and transparency in an autonomous image classifier. They
tested whether showing the classifier’s confidence values would increase trust in
it. They found that trust was largely based on system performance (accuracy)
and did not increase as a result of presenting system confidence information to
the human. We hypothesize that they did not see an overall increase in trust
because they used class probabilities as proxies for system confidence, which
has shown to be a poor method for self-assessment [6]. Accurate machine self-
assessment is critical since cues to calibrate trust can actually worsen calibration
if they are not reliable [16].

In this work, we developed a closed-loop trust calibration system that adap-
tively asks for human assistance during the image classification task based on
both predicted human trust and self-assessed machine capability. We place spe-
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cial emphasis on accurate machine self-assessment in encouraging appropriate
trust in and reliance on automation, and show in experiments that improved
self-assessment capabilities increase overall trust in the machine, reduce over-
and under-reliance behaviors, and increase team performance.

3 Closed-Loop Trust Calibration System

In what follows, we describe the three major components of our closed-loop
trust calibration system, developed for human-machine teaming in the image
classification domain. The first component is a machine self-assessment module
that estimates the image classifier’s confidence in its label, independent of class
probabilities. The second is a real-time human trust prediction model. The third
is a dynamic reasoning component that, given the classifier’s confidence and the
human’s trust level, determines whether or not to ask the human for assistance.
These components were trained and evaluated using data from two rounds of
experiments in which humans worked with semi-autonomous image classifiers to
classify 50 images and rated their trust after assessing machine performance for
each image (details in Section 4). We present component-specific results in the
following sections, and team performance-related results later in the paper.

3.1 Machine Self-Assessment

Neural networks trained as image classifiers typically have a final layer of neu-
rons, where each neuron corresponds to a class in the dataset. The neuron with
the highest probability (after softmax operation) is chosen as the image label. A
widely used baseline for confidence in that label is its corresponding probability.
In practice, this probability is not constrained to correlate with the accuracy
of the predicted label, leading to highly overconfident errors. Indeed, softmax
probabilities are known to be non-calibrated, sensitive to adversarial attacks,
and inadequate for detecting out-of-distribution examples [6] [4].

[4] introduced a new confidence metric based on the True Class Probability
(TCP), the probability of the correct class, regardless of whether that class was
chosen as the predicted label by the classifier. As the TCP is not known at
test time, they introduce a method to learn the confidence by implementing a
separate neural network (ConfidNet) trained to estimate the TCP during train-
ing.[12] provided an alternate method to train the confidence neural network to
output “correctness” instead of TCP. That is, the neural network is trained to
output a value of 1 if the label is correct and 0 otherwise. We follow this method
for machine self-assessment in our work. In Figure 1, we show a comparison of
learned self-assessment to the baseline use of probability on a subset of images
from the STL-10 dataset [3]. As expected, it outputs predominantly low values
for incorrect labels, and predominantly high values for correct labels. Moving
forward, we use the terms “Unaware Classifier” for the image classifier that uses
class probability as a confidence score and “Aware Classifier” for the image clas-
sifier that uses learned self-assessment [12], since the network trained on top of
the image classifier is aware of the latter’s capability to classify images.
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Fig. 1: The classifier produces a probability for the label (top row), which may be
correct (A) or incorrect (B). These distributions have significant overlap, so probability
is a poor indicator of correctness. In comparison, learned self-assessment (second row),
produces values close to 1 for correct labels (C) and close to 0 for incorrect labels (D).

3.2 Trust Modeling and Prediction

In real-world applications, humans will not regularly provide feedback for the
machine to assess the need for trust calibration. Trust calibration systems must
predict human trust from potentially sparse information. Early approaches uti-
lized rule-based and statistical models, with recent research shifting towards
Long Short-Term Memory (LSTM) networks to better capture temporal de-
pendencies and enhance predictive accuracy [11]. As such, our system employs
an LSTM for human trust prediction based on real-time temporal data. The
LSTM prediction model was trained on data collected from the first round of
experiments, using the predictive features of ground truth accuracy of the image
classifier (since humans reviewed machine performance in each trial and could
intervene if needed), the classifier confidence in its label, and the compliance
of the participant (whether a participant chose to assist the classifier when as-
sistance is (not) requested). We used Mean Squared Error (MSE) to evaluate
model performance on a validation set, for which we obtained an MSE of 1.67.
Our model was then employed to predict human trust in the second round of
experiments, for which it obtained an MSE of 3.3. Example prediction results
for a single participant can be seen in Figure 2. Note that for our purposes,
we primarily needed the model to predict general trends of trust, and not the
precise trust scores as such.

3.3 Dynamic Reasoning Model

The Dynamic Reasoning Model determines when to ask for assistance based on
predicted human trust and machine confidence. In round one of experiments, the
model used a dynamic threshold. Machine confidence values below the threshold
resulted in the machine asking for assistance. After initializing this threshold at
50% for the first trial of the experiment, the threshold was adjusted according
to the compliance of human actions with the machine’s request for assistance.
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Fig. 2: Real-time results of LSTM model on a single participant. There are only 43 trials
in the plots because the model requires seven previous time steps to make predictions.

If the machine asked for assistance but assistance was not given, the threshold
was decreased by 5 points, thus triggering requests for assistance at relatively
lower confidence values in the following trials. If the machine did not ask for
help but its human partner intervened anyway, the threshold was increased by 5
points, resulting in requests for assistance at relatively higher confidence values in
future trials. By dynamically changing the threshold for the machine to request
assistance in this manner, we calibrate human trust based on machine capability
in real time.

In round two of experiments, we replaced the threshold rule with a model
trained on data from round one. We hypothesized that a model with knowledge of
trust ratings, machine confidences, and instances of human intervention would be
able to determine when assistance is both needed by the machine and is likely to
be given by its human partner. We trained a 3-layer feedforward neural network
to predict whether a human would assist the machine in an image classification
trial, given the human’s trust level and the machine’s reported confidence in
the current trial. When tested on a held-out set of examples from round one of
experiments, our model reached an accuracy of 83.94% for the Aware classifier,
and 82.91% for the Unaware classifier.

4 Experiments

During experiments, human participants were asked to team with an autonomous
image classifier to complete an image classification task, with the goal of max-
imizing team performance while minimizing their own effort under time con-
straints. Each participant engaged in two sessions - one with the Unaware classi-
fier (probabilities as confidence scores) and one with the Aware classifier (using
learned self-assessment). We hypothesized that improved self-assessment capa-
bilities would lead to improved overall trust and team performance since humans
are more likely to trust and appropriately rely on a machine that knows when it
can and cannot successfully complete a task. We offer the following hypotheses:
H1: We will observe increased overall trust in the Aware classifier, despite equal
machine performance (classification accuracy).
H2: Teaming with the Aware classifier will result in a larger reduction in human
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over- and under-reliance on the machine, since improved self-assessment means
the machine is better able to ask for assistance when needed.
H3: Teaming with the Aware classifier will result in better team performance
(classification accuracy). Reduction in over- and under-reliance behaviors re-
duces both machine and human error.

4.1 Experimental Paradigm

Image Classification Task: During the image classification task, a Graphical
User Interface (GUI) built using the PsychoPy Python library served as the point
of interaction between participants and the image classifiers. In a single session
of the main task, participants were presented with 50 images consecutively. At
the start of each image slide (Figure 3A), participants were shown the image,
the name of the classifier (R2D2 or Wall-E), the current team score, a count
down clock, the classifier’s request or refusal for assistance (“I Need Assistance”
or “I Do Not Need Assistance”), and “Assist” and “Do Not Assist” buttons. They
were given five seconds to choose whether to assist, after which the machine
submitted its own label as the team label. If the participant chose to assist, they
were prompted to enter a label into a text box to stand as the team label.

BA

Fig. 3: The human-classifier interface during an experimental trial. Participants are
instructed to choose to comply with a statement that assistance is or is not needed.

After submitting the team label (Figure 3B), the GUI displayed an updated
team performance score (which is penalized when there is misalignment between
machine correctness and human intervention), the classifier’s label for the im-
age, and the classifier’s confidence in that label. The color of the confidence score
ranges from red to green on a sliding scale, determined by the level of confidence
(0-100 scale). After viewing this information, the subject was asked to report
their cumulative trust in the classifier based on their overall experience with the
classifier thus far on a 0 - 100 scale. Previous and average cumulative trust scores
were displayed to aid the participants in keeping track of their trust development
and to encourage them to view their current trust rating as cumulative.
Procedure: In an adaptation session, subjects first completed a pre-experiment
survey and read through instructional slides describing the task and GUI. In-
structions informed participants that they would team with a machine partner
to classify images and that the machine would ask for assistance when it thinks
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that its label is wrong. It was made clear that they did not have to comply
with machine requests for help and that they had the option to assist even when
the machine did not ask for help. Participants were instructed to report overall
trust in the machine at the end of each trial, after viewing the machine’s label
and confidence score for that trial’s image. Participants then completed a demo
to ensure they understood the task and how to interact with the GUI. They
then performed the core image classification task over two main sessions for the
two classifiers, with a post-experiment survey to assess their overall trust in the
classifier and gain insight into their impression of the classifier’s performance.
Pre- and Post-experiment Surveys: The pre-experiment survey included
a demographic survey on age, race, gender, country of birth, education, prior
experience with image classifiers, and prior experience with semi-autonomous
systems. They completed the mini-IPIP scale to assess Big Five personality
traits and a well-established propensity to trust automation survey [14] before
engaging with the image classifier. The post-experiment survey (Figure 5) was
presented to participants after each of the Aware and Unaware sessions to gauge
their overall experience with each classifier. We used a validated trust in au-
tomation survey ([14]), further replacing the term “decision aid" with “classifier"
for specificity. Participants rated each entry on a scale of 1-10.
Images: We used the STL-10 dataset, which consists of 10 classes of objects
(airplane, bird, car, cat, deer, dog, horse, monkey, ship, truck). To create unifor-
mity in our experiments, we created two groups of 50 hand-picked images that
were high contrast, had clear, singular objects, and were not used to train the
self-assessment model. We made the selection such that the class distribution and
the accuracy within each class were preserved. For example, the classifier we used
in the experiments (EfficientNet-B0) accurately classified airplanes only 50% of
the time, while it accurately classified ships 99% of the time. We ensured this
asymmetry was reflected in the image groups that the human subjects viewed.
Experimental Design: We performed two rounds of experiments with 8 sub-
jects each. In both rounds, we used a 2 x 2 x 2 counterbalanced within-subjects
design where subjects were exposed to the Aware and Unaware classifiers (both
with 80% accuracy), the name of the classifier (Wall-E or R2D2), and the set of
50 images presented (Group 1 or Group 2). The two rounds differed in terms of
the Dynamic Reasoning model deciding when to ask for assistance (section 3.3).

5 Experiment Results - Round One

Paired t-tests were used to determine if there were significant differences (p <
0.05) in reported trust, over- and under- reliance on the machine, and team per-
formance between the Aware and Unaware classifiers.

Cumulative Trust: Subjects reported 34% higher trust in the Aware classi-
fier, as compared to Unaware (Figure 4, left). As shown on the right of Figure
4, this result is significant (p = 0.0002) and has a large effect size (Cohen’s d =
1.93). These results support H1.
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Over- and Under-reliance: Under-reliance occurs when the participant as-
sists the machine even though it was capable of correctly labeling the image (a
proactive human takeover). Over-reliance occurs when the participant does not
assist even though the machine cannot correctly label the image. Sessions with
the Aware classifier resulted in fewer proactive takeovers (4.1 vs. 9.37 takeovers)
and fewer instances of over-reliance (2.37 vs 4.75 machine errors without human
assistance) on average as compared to Unaware. These results were statistically
significant with large effect size (Figure 4, right), and support H2.
Team Performance: Team performance for participants that worked with the
Aware classifier (95% classification accuracy) surpassed those working with the
Unaware classifier (90% classification accuracy). These results support H3.

p-valueCohen’s d
Effect Size

Mean (±MSE)Classifier

0.001.93 65.5  (±4.97)UnawareCumulative Trust

87.5 (±2.76)Aware
0.011.549.37 (±1.1)UnawareProactive Human Takeovers 

(Under-reliance) 4.1 (±.39)Aware
0.001.694.75 (±.64)UnawareMachine Error

(Over-reliance) 2.37 (±.26)Aware
0.001.74.90 (±.01)UnawareTeam Performance 

(Accuracy) .95 (±.005)Aware

Fig. 4: Round One: Closed-loop trust calibration system with improved self-assessment
results in increased human trust, reduced over- and under-reliance, and improved team
performance. Improved self-awareness leads to improved trust in the machine by 34%.

Survey Questions
Q1: To what extent does the classifier perform its function properly
Q2: To what extent can the classifier's behavior be predicted from 
moment to moment?
Q3: To what extent can you count on the classifier to do its job?
Q4: To what extent does the classifier perform the task it was designed to 
do in the system?
Q5: To what extent does the classifier respond similarly to similar 
circumstances at different points in time?
Q6: What is your degree of faith that the classifier will be able to cope with 
other system states in the future?
Q7: What is your degree of trust in the classifier to respond accurately?
Q8: What is your degree of trust in the classifier's ability to assess its own 
capability?
Q9: What is your overall degree of trust in the classifier?

Fig. 5: Round One: Mean participant response to the post-experiment survey. Partici-
pants had an overall higher trust in and preference for the Aware classifier.

Figure 5 shows the mean participant response to questions in the post-
experiment survey. The purpose of surveying participants after each session was
to (1) gauge their overall trust in the machine once the task was completed,
(2) validate the self-reported trust values observed during the experiment, and
(3) understand how different aspects of the classifiers affected their trust. Over-
all, participants perceived the Aware classifier as higher performing than the
Unaware classifier. Question 9, in particular, validates the results in Figure 4,
indicating that participants did indeed have higher trust in the Aware classi-
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fier. Question 8 supports our hypothesis that the difference in self-assessment
capabilities largely drove this difference in perceived trust.

6 Experiment Results - Round Two

Round two involved using real-time prediction of trust instead of relying on
compliance of human intervention, and used a neural network to determine when
to ask for assistance instead of a threshold-based rule. Results of this round of
experiments indicate that the first round’s results hold even when the system
does not rely directly on reported trust in each trial (Figure 6). As such, we are
confident that our system will be applicable to more realistic situations in which
the machine operates with sparse human feedback.

p-valueCohen’s dMeanClassifier
0.0011.8253.87  (±6.9)UnawareCumulative Trust

81.88 (±3.31)Aware
0.0011.275.87 (±1.04)UnawareProactive Human Takeovers 

(Under-reliance) 2.75 (±.64)Aware
0.0011.037.13 (±.61)UnawareMachine Error

(Over-reliance) 4.87 (±.89)Aware
0.0021.01.85 (±.01)UnawareTeam Performance (Accuracy)

**Machine accuracy = 80% .90 (±.02)Aware

Fig. 6: Round Two: We obtain similar, statistically significant results of increased hu-
man trust (by 52%), reduced over- and under-reliance, and improved team performance.

7 Conclusion

In this work, we developed a closed-loop trust calibration system for human-
machine collaboration in the image classification task that included a real-time
human trust prediction model, a machine self-assessment model, and a dynamic
reasoning model that determined when the machine should ask for human assis-
tance to calibrate trust. We performed human subject experiments to highlight
the importance of accurate self-assessment for trust calibration. Specifically, we
showed that improved self-assessment capabilities result in increased overall trust
in the autonomous image classifier, reduced over- and under-reliance behaviors
on the part of the human, and improved overall team performance in the classi-
fication task. In future work, we would like to extend our experiments such that
(1) we require multi-tasking on the part of the human and (2) the human may
not be the expert and may also be uncertain about their ability to accomplish
the task. We expect these extensions will increase the applicability of our trust
calibration system to more complex, real-world scenarios.

Disclosure of Interests. The authors have no competing interests to declare
that are relevant to the content of this article.



10 D. Warmsley et al.

References

1. Kumar Akash, Neera Jain, and Teruhisa Misu. Toward adaptive trust calibration
for level 2 driving automation. In Proceedings of the 2020 International Conference
on Multimodal Interaction, pages 538–547, 2020.

2. Min Chen, Stefanos Nikolaidis, Harold Soh, David Hsu, and Siddhartha Srinivasa.
Planning with trust for human-robot collaboration. In Proceedings of the 2018
ACM/IEEE International Conference on Human-Robot Interaction, 2018.

3. Adam Coates, Andrew Ng, and Honglak Lee. An analysis of single-layer networks
in unsupervised feature learning. In Proceedings of the Fourteenth International
Conference on Artificial Intelligence and Statistics, pages 215–223, 2011.

4. Charles Corbiere, Nicolas Thome, Avner Bar-Hen, Matthieu Cord, and Patrick
Perez. Addressing failure prediction by learning model confidence. Advances in
Neural Information Processing Systems, 32, 2019.

5. Yosuke Fukuchi and Seiji Yamada. Selectively providing reliance calibration cues
with reliance prediction. arXiv preprint arXiv:2302.09995, 2023.

6. Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger. On calibration of
modern neural networks. In International Conference on Machine Learning, pages
1321–1330, 2017.

7. Martin Ingram, Reuben Moreton, Benjamin Gancz, and Frank Pollick. Calibrating
trust toward an autonomous image classifier. Technology, Mind, and Behavior,
2021.

8. Alexander Kunze, Stephen J Summerskill, Russell Marshall, and Ashleigh J Filt-
ness. Automation transparency: Implications of uncertainty communication for
human-automation interaction and interfaces. Ergonomics, 62(3):345–360, 2019.

9. Joseph E Mercado, Michael A Rupp, Jessie YC Chen, Michael J Barnes, Daniel
Barber, and Katelyn Procci. Intelligent agent transparency in human–agent team-
ing for multi-UxV management. Human Factors, 58(3):401–415, 2016.

10. Kazuo Okamura and Seiji Yamada. Adaptive trust calibration for human-ai col-
laboration. PLOS ONE, 15(2):e0229132, 2020.

11. Oluwatobi Olabiyi, Eric Martinson, Vijay Chintalapudi, and Rui Guo. Driver
action prediction using deep (bidirectional) recurrent neural network, 2017.

12. Kiyofumi Miyoshi Tsz Yan So Sivananda Rajananda Webb, Taylor W. and Hakwan
Lau. Performance-optimized neural networks as an explanatory framework for
decision confidence. bioRxiv preprint bioRxiv:2021.09.28.462081, 2021.

13. Magdalena Wischnewski, Nicole Krämer, and Emmanuel Müller. Measuring and
understanding trust calibrations for automated systems: A survey of the state-
of-the-art and future directions. In Proceedings of the 2023 CHI Conference on
Human Factors in Computing Systems, pages 1–16, 2023.

14. Jessie Yang, Christopher Schemanske, and Christine Searle. Toward quantifying
trust dynamics: How people adjust their trust after moment-to-moment interaction
with automation. Human Factors, 65(5):862–878, 2023.

15. Jessie Yang, Vaibhav V Unhelkar, Kevin Li, and Julie A Shah. Evaluating effects
of user experience and system transparency on trust in automation. In Proceedings
of the 2017 ACM/IEEE International Conference on Human-Robot Interaction,
pages 408–416, 2017.

16. Michelle Yeh and Christopher D Wickens. Display signaling in augmented real-
ity: Effects of cue reliability and image realism on attention allocation and trust
calibration. Human Factors, 43(3):355–365, 2001.


