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Abstract. The development of accurate and efficient cognitive models
remains a central challenge in cognitive science and artificial intelligence.
This paper introduces a novel methodology that integrates formal verifi-
cation techniques into cognitive model development, using the Common
Model of Cognition (CMoC) as a unifying framework. By translating cog-
nitive models into state machine representations, we enable automated
analysis through formal verification tools such as nuXmv. We demon-
strate this approach using three toy models—ranging from procedural ex-
ecution, memory retrieval, and problem-solving—which are developed in
both ACT-R and Soar architectures. These models are transformed into
state transition systems to verify properties such as correctness (i.e., task
completion) and haltability (i.e., guaranteed termination). Our method
offers a pathway to increasing confidence in model behavior and reveals
insights into the minimal constructs required to represent and translate
cognitive architectures into formal verification environments. This work
highlights the viability of CMoC as a state machine framework suitable
for formal reasoning, and offers a pathway toward rapid, accurate, and
architecture-neutral cognitive model development. We conclude by out-
lining how these foundations can support the creation of a high-level
modeling language and compiler that bridges symbolic cognitive archi-
tectures with formal methods from computer science.

Keywords: Cognitive modeling · Formal verification · Common Model
of Cognition · State machines · nuXmv · ACT-R · Soar

1 Introduction

Cognitive models offer a powerful means of simulating and understanding hu-
man thought processes, with applications in psychology, human–computer in-
teraction, and autonomous systems. Architectures such as ACT-R [3] and Soar
[12] have enabled the development of numerous task models, capturing phenom-
ena ranging from memory retrieval to problem solving. However, while these
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models often succeed in mimicking behavioral outcomes, they typically lack for-
mal guarantees regarding their internal logic, completeness, and termination.
This gap between empirical fidelity and logical soundness presents an important
challenge. As cognitive models become more complex and are applied in criti-
cal settings—such as adaptive training systems, intelligent agents, and cognitive
tutoring—assessing their correctness and reliability becomes increasingly impor-
tant, especially as they are deployed in critical settings. Traditional validation
techniques, including behavioral alignment and expert inspection, do not always
scale or catch subtle implementation flaws.

To address this limitation, we explore the use of formal verification methods
from computer science, particularly model checking, as a complementary tool
for cognitive modeling. Our aim is to move toward a framework where cognitive
models can be analyzed not only for plausibility but also for logical consistency
and correctness. Central to our approach is the Common Model of Cognition
(CMoC) [11], a proposed standard architecture that captures shared structural
principles across multiple cognitive systems. The CMoC provides an abstract,
modular view of cognition—including working memory buffers, long-term mem-
ory systems, and a central procedural controller—that lends itself naturally to
formal representation. By treating CMoC as a high-level design language, we
can map cognitive behaviors into state machines suitable for formal analysis.

In this paper, we investigate this approach through three illustrative cogni-
tive tasks that span procedural control, memory retrieval, and problem solving.
These tasks are implemented in both ACT-R and Soar to highlight architec-
tural differences and commonalities. We then translate these models into formal
state-transition systems and analyze them using the nuXmv model checker [5],
focusing on properties such as haltability and goal satisfaction. Our broader goal
is to lay the groundwork for a toolchain that supports verifiable cognitive model-
ing across architectures. This includes defining the minimal constructs needed for
formal translation, identifying architectural features that align well with verifica-
tion tools, and exploring the potential for automated compilation from cognitive
specifications to formal models. Figure 1 shows an overview of our verification
pipeline and compiler-based translation process.

Fig. 1. Overview of the verification process and compiler approach.
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The remainder of this paper is organized as follows. We begin by summarizing
the related work in this domain and then outlining the theoretical background
of the CMoC, ACT-R, and Soar. We then describe our three case models and
their formalization. Finally, we present our findings and discuss implications for
the future development of high-assurance cognitive modeling frameworks.

2 Related Work

Cognitive architectures like ACT-R and Soar have been targets for applying for-
mal verification methods (e.g., model checking, formal semantic modeling) to
ensure the correctness of cognitive models [7]. For instance, Langenfeld et al.
[13] present a formal operational model of the ACT-R architecture along with a
translation of ACT-R cognitive models into timed automata, enabling exhaus-
tive analysis of model behavior. Using this approach, they could automatically
check ACT-R models for defects (such as deadlocks or incorrect rule implemen-
tations) and verify properties like expected chunk presence or timing feasibility,
which would be tedious to find by simulation alone. This work builds on prior
formal semantics for ACT-R (e.g., Albrecht & Westphal [2]) and demonstrates
that model checking techniques can scale to non-trivial ACT-R models. Other
researchers have explored specific formal properties; for example, Gall and Früh-
wirth [6] encoded ACT-R in constraint-handling rules to verify confluence (i.e.
consistency of outcomes despite rule ordering) in ACT-R models. These efforts
highlight a clear connection between cognitive science models and formal meth-
ods: by treating cognitive architectures as formal systems (e.g., state machines or
logical frameworks), one can apply verification tools to guarantee that cognitive
models faithfully implement the intended psychological theory.

Early work by Macklem and Mili [15] introduced a specification language for
cognitive models and algorithms to automatically check a model’s correctness
against its specifications. This was among the first attempts to bring rigorous
software verification practices to cognitive modeling, underlining the need for
modular, reusable model specifications and the ability to prove that a cogni-
tive model meets certain requirements (both in terms of task performance and
human-like behavior).

Beyond ACT-R, other architectures have seen similar efforts. In the Soar
architecture, recent research has integrated formal verification with cognitive
modeling for autonomous agents. Ganeriwala et al. (2025) describe a framework
where agent decision logic is modeled in Soar (including its symbolic rules and
reinforcement learning components) and then automatically translated into the
nuXmv model checker to verify safety and operational correctness properties [8].
This combination of systems modeling, simulation, and model checking ensures
that the Soar-based autonomous agent behaves correctly under all considered
scenarios, marrying cognitive architecture design with formal verification to im-
prove reliability. Similarly, Ragni et al. [19] argued for a formal foundation for
cognitive architectures in general, using formal representations to compare and
evaluate different architectures. All of these works illustrate how formal meth-
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ods (such as symbolic model analysis, temporal logic model checking, or theorem
proving) can be applied to cognitive architectures to rigorously verify models of
human cognition.

3 Preliminaries

3.1 Common Model of Cognition

The Common Model of Cognition (CMoC) – originally proposed as the “Standard
Model of the Mind” by Laird, Lebiere, and Rosenbloom [11] – is a high-level
consensus framework capturing the core cognitive modules and their interactions
common to many cognitive architectures. In essence, the CMoC distills decades
of cognitive architecture research (spanning ACT-R, Soar, SIGMA, etc.) into
a unified model of the mind’s fixed structure [21]. It specifies key processing
modules (perception, working memory, procedural memory, action, etc.) and
the information flow between them as a blueprint for both understanding human
cognition and designing cognitive systems.

A number of studies have applied and evaluated the CMoC in various con-
texts, often integrating it with computational tools or data to test its valid-
ity. For example, Stocco et al. [23] conducted a neuroimaging-based evaluation
of the CMoC by mapping its components to brain regions and comparing its
predicted brain connectivity patterns against human fMRI data across multi-
ple tasks. Using dynamic causal modeling and a Bayesian model comparison,
they found that a network architecture based on the Common Model "vastly
outperforms all other architectures" (several alternative theoretical brain archi-
tectures) in explaining the fMRI data. This provides strong empirical support
that the CMoC’s functionally defined modules and pathways correspond to the
organization of human cognition in the brain, highlighting a bridge between a
formal cognitive architecture and biological data.

Researchers have also worked on integrating additional cognitive facets into
the Common Model and formalizing its structure. For instance, Larue et al. [14]
explored how emotion could be incorporated into the CMoC, identifying the
functional points where emotion processes interface with the standard cognitive
modules. This study outlined how various models of emotion can be aligned with
the CMoC, acknowledging that human-like AI will require motivational and emo-
tional states within the cognitive architecture. In a similar vein, other extensions
have been proposed: e.g., adding metacognitive capabilities (self-monitoring and
control) on top of the CMoC’s processes and evaluating how this could be real-
ized in a unified model [10], or examining how natural language processing fits
into the Common Model’s structure [9]. These efforts apply the CMoC as a base-
line and then integrate new components or constraints, often via computational
implementation, to test the model’s completeness and adaptability.

Notably, there have also been moves to use formal methods to specify and
verify the CMoC itself. Romero [21] proposed CogArch-ADL, an architecture
description language (ADL) based on π-calculus, to formally describe cognitive
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architectures in a CMoC-compliant way. By extending a formal ADL, Romero’s
approach allows researchers to rigorously specify the modules and connections
of a CMoC-based architecture and then verify properties like architectural con-
sistency or equivalence between different cognitive architectures. This kind of
work ensures that as new cognitive architectures are developed or existing ones
are compared, they can be checked against the Common Model’s formal speci-
fication, thereby bridging cognitive architecture theory with formal verification
at the architectural level. Such formal descriptions make it possible to prove,
for example, that a given implementation of a cognitive architecture conforms
to the CMoC’s structural requirements or to model-check high-level cognitive
workflows for logical soundness within the CMoC framework.

3.2 ACT-R

ACT-R is a cognitive architecture and a theory of simulating and understanding
human cognition [3,20]. Its theory is embodied in the ACT-R software, through
which we can construct models that can store, retrieve, and process knowledge, as
well as explain and predict performance [4]. There are currently two main kinds
of knowledge representations in ACT-R, and they are declarative knowledge and
procedural knowledge. Declarative knowledge consists of chunks of memory (e.g.,
apple is a kind of fruit), while procedural knowledge performs basic operations,
moves data among buffers, and identifies the next instructions to be executed
(e.g., if the preparation to submit your answer is completed, then click the submit
button). When the model is driving a bus from a first-person perspective, these
pieces of information will contain information such as what visual items are
presented to look at and what tasks to do next [22].

3.3 Soar

Soar is a general cognitive architecture that provides a computational infras-
tructure that resembles the cognitive capabilities exhibited by a human. Soar
implements knowledge-intensive reasoning that enables the execution of rules
based on the context. It also has the capability to integrate learning into the
agent using chunking or reinforcement learning. Soar has its origins in the work
done by Newell and Simon [18] from the late 1950s through the mid-1970s, also
inspired by the ”General Problem Solver” created by Ernst and Newell [17].
While ACT-R was designed to model human behavior, Soar was inspired by it.
Soar’s general computing concept is based on objectives, problem spaces, states
and operators [12,16] . Soar encompasses multiple memory constructs (e.g., se-
mantic, episodic, etc.) and learning mechanisms (e.g., reinforcement, chunking,
etc.) and is a programmable architecture with an embedded theory. This enables
executing Soar models on embedded system platforms and studying the design
problem through rapid prototyping and simulation.
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3.4 nuXmv

nuXmv is a symbolic model checker. It builds on and extends NuSMV. It im-
plements verification for finite and infinite state synchronous transition systems.
For finite-state systems, it complements NuSMV’s basic verification techniques
with a family of new state-of-the-art verification algorithms. For infinite-state
systems, it extends the NuSMV language with new data types, namely inte-
gers and reals, and it provides advanced SMT-based model checking techniques.
nuXmv implements SMT-based model checking techniques [5].

4 Initial Development

We developed and analyzed three cognitive models to evaluate our framework: a
simple procedural task (Hungry-Thirsty), a memory retrieval task (Fan Effect),
and a problem-solving task (Water Jug). Each was implemented in ACT-R and
Soar, then translated into state machine representations to enable formal ver-
ification using the CMoC. The corresponding source code and model files are
available on GitHub.

4.1 Development Case 1: Hungry-Thirsty Model

The Hungry-Thirsty model [1] illustrates a simple decision-making task and
serves as a canonical example for teaching and comparing production-based be-
havior across architectures. The agent is either hungry, thirsty, or both. If hungry,
it eats; if thirsty, it drinks. If both conditions are true, eating takes priority over
drinking.

Soar model. In Soar, the model uses two attributes—hungry and thirsty—each
with binary values yes or no. Operators EAT and DRINK transition the agent’s
state by satisfying hunger or thirst respectively. Applying EAT sets hungry = no
while leaving thirst unchanged. Likewise, DRINK updates only the thirst state.
Production rules define operator applicability based on current attributes, and
the system halts when both drives are satisfied.

ACT-R model. The ACT-R implementation stores the agent’s state in the goal
buffer. Three production rules control the behavior: one each for eat, drink, and
stop. Rule selection is based on utility values; eating is prioritized by assigning
it a higher utility than drinking. When neither hunger nor thirst is present, the
stop rule halts the model.

4.2 Development Case 2: Fan Model

The Fan Effect task in the ACT–R tutorial (Unit 5 http://act-r.psy.cmu.
edu/software/) demonstrates how memory retrieval is influenced by associative
complexity. The model learns sentences associating people with locations (e.g.,
"A hippie is in the park"). Later, it must determine whether new probe sentences
match learned pairs. Reaction time increases with the number of associations—a
phenomenon the model aims to replicate.

https://github.com/ParthGaneriwala/FMinCMoC.git
http://act-r.psy.cmu.edu/software/
http://act-r.psy.cmu.edu/software/
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Soar model. In Soar, learned pairs are explicitly stored in semantic memory.
Probes activate retrieval rules based on working memory cues. Retrieval latency
is simulated by requiring multiple decision cycles when several memories match,
reflecting cognitive load.

ACT-R model. The ACT-R version follows the tutorial design. Learned asso-
ciations reside in declarative memory, and probes are encoded in the imaginal
buffer. ACT-R’s activation-based retrieval naturally captures the fan effect: when
multiple chunks match a cue, spreading activation is diluted, increasing retrieval
time. The model’s timing behavior closely reflects empirical human data.

4.3 Development Case 3: Water Jug Model

This task involves reaching a target volume of water (e.g., 2 liters) using two jugs
with different capacities (3 and 5 liters). It is a classic benchmark for problem
solving through state-space exploration and the Einstellung (problem solving
set) effect.

Soar model. Soar solves the task using a defined problem space and operators:
fill, empty, and pour. Each operator has explicit preconditions and modifies
the agent’s working memory to reflect the current jug state. To avoid revisiting
previous states, Soar uses episodic memory to track transitions, ensuring efficient
path traversal.

ACT-R model. The ACT-R model maintains jug states in the imaginal buffer.
It includes rules for fill, pour, empty, and reset. A rule fires only if it avoids
three conditions: (a) both jugs are empty, (b) both jugs are full, or (c) the next
state would repeat a previous one. If all valid moves are exhausted, a reset rule
clears the state. Because ACT-R does not evaluate long-term outcomes, the
model may enter loops or redundant states unless additional planning mecha-
nisms are introduced.

5 Analysis

Although we did not conduct automated formal verification, we translated our
three cognitive models—Hungry-Thirsty, Fan Effect, and Water Jug—into state
machine representations compatible with the nuXmv model checker. These trans-
lations were performed manually and served as a proof-of-concept for modeling
cognitive architectures in a verification-friendly format. By encoding the control
logic and memory updates in a declarative temporal modeling language, we were
able to critically examine the structure and behavior of cognitive models across
architectures and identify their verification-relevant features.
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5.1 Manual Translation Process

Each ACT-R and Soar model was translated into a finite-state specification using
nuXmv’s module-based language. For Soar, we constructed a top-level control
module with variables representing system state, operator application, and inter-
nal memory flags (e.g., state_hungry, state_thirsty, state_operator_name).
We introduced a ‘propose-apply‘ cycle that mimics Soar’s production rule se-
quencing. Each operator transitioned the model between cognitive states, and
condition-action logic was encoded as transition rules. For ACT-R, we defined
goal and buffer variables (goal, goal_hungry, goal_thirsty) and modeled the
effects of production rules using guarded state transitions. Simplified represen-
tations of ACT-R’s buffer updates allowed us to abstract away subsymbolic
components such as utility learning and activation dynamics, focusing instead
on the symbolic flow of behavior.

5.2 Observations from Modeling

The translation process revealed several important insights:

– Explicitness of Control Flow: Modeling in nuXmv forced the specifi-
cation of state transitions and rule applicability in a highly explicit and
deterministic manner. While Soar’s operators aligned well with this struc-
ture, ACT-R’s use of parallel buffer operations and utility-based selection
required careful abstraction to fit a state machine model.

– CMoC as an Intermediate Formalism: Using the CMoC as a guide
allowed us to identify architectural parallels between ACT-R and Soar. Con-
structs such as buffer updates, goal management, and conditional rule exe-
cution could be expressed in a common representational vocabulary, stream-
lining translation.

– Simplification of Complex Features: We deliberately omitted architec-
tural features that are difficult to represent in purely symbolic systems (e.g.,
ACT-R’s stochastic retrieval, Soar’s chunking mechanisms). This simplifica-
tion allowed for a cleaner mapping but also highlighted the need for future
work in modeling probabilistic and adaptive behavior. While these omissions
were necessary to demonstrate feasibility, they also limit external validity
and will need to be addressed in future extensions.

– Toolchain Reflection: While manual translation was feasible for small
models, the process was tedious and error-prone. This underscores the need
for an automated compiler or modeling language that bridges cognitive ar-
chitectures and formal verification environments, especially if larger or more
dynamic models are to be verified.

Our manual translation serves as a stepping stone toward a future pipeline
where formal properties can be specified and verified automatically. The current
work demonstrates that both ACT-R and Soar models can be encoded in a
verification-compatible format, and that CMoC provides a conceptual backbone
for making this translation systematic and reusable.
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6 Conclusion

This work demonstrates that formal verification methods—particularly symbolic
model checking—can be meaningfully integrated with symbolic cognitive mod-
eling through the CMoC. By developing and translating models into state ma-
chine representations, we showed how cognitive behaviors in ACT-R and Soar
can be systematically prepared for analysis of correctness and termination using
tools like nuXmv. Our current work is limited to three small-scale models and
does not cover the full range of cognitive functions (e.g., learning, perceptual-
motor integration). Moreover, while the CMoC abstraction is effective, it may
require specialized handling during translation. In addition, our reliance on man-
ual translation may introduce bias or artifacts, underscoring the importance of
an automated compiler in future work.

6.1 Future Work

In the next phase of this research, we will develop a compiler that automates
the transformation of models specified in the CMoC into executable code and
formal verification models. This effort will include the design of a high-level mod-
eling language that reflects the structure and semantics of CMoC components
(perhaps similar to Herbal or to previous high level behavior representation lan-
guages), enabling more intuitive and architecture-neutral model specification.
The compiler will support automatic translation into ACT-R and Soar repre-
sentations for simulation, as well as into nuXmv-compatible formats for formal
analysis. In parallel, we plan to extend the modeling framework to accommodate
time-sensitive behaviors, such as response latencies and scheduling constraints,
along with mechanisms for learning, including chunking and reinforcement learn-
ing. Our long-term objective is to scale the system to model complex, real-world
cognitive tasks and to incorporate empirical data for validation, thereby en-
abling a unified, verifiable approach to cognitive modeling that bridges symbolic
architectures and formal methods.
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