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This paper introduces Metric Learning-Based Few-Shot Learning for Cross-
Target and Cross-Domain Stance Detection (MLSD), a novel framework for
adapting stance detection models to new targets and domains with limited la-
beled data. Stance detection is a text classification task that identifies the posi-
tion (e.g., favor, against, neutral) an author expresses toward a specific target.
However, adapting models to new targets or domains (domain adaptation) is
challenging when annotated data is scarce. MLSD addresses this few-shot adap-
tation problem by using metric learning with triplet loss to identify semanti-
cally representative examples and construct a discriminative embedding space
for transfer. We evaluate MLSD on two benchmark datasets and six deep learn-
ing models widely used in stance detection research, demonstrating statistically
significant macro-F1 improvements over standard and random few-shot base-
lines.

1 Introduction

Stance detection—the task of identifying an author’s position toward a given
target, such as a person, entity, or issue—has gained significant attention, partic-
ularly following its inclusion in Task 6: Stance Detection on Social Media Posts
at the 2016 International Workshop on Semantic Evaluation (SemEval 2016)
[14]. Common stance categories include in favor of, against, and neutral /neither,
though more recent studies have expanded this taxonomy to include labels such
as support, agree/disagree, refute, discussion, commenting, and unrelated [3]. For
instance, in the SemEval 2016 dataset, the statement “Whether someone wants
to have children or not should be completely up to the person carrying that preg-
nancy” conveys a favor stance toward the target ‘Legalization of Abortion.’

Traditional stance detection assumes training and testing on the same target,
but real-world tasks often require generalization across targets. This has led to
two subproblems: cross-target stance detection (CTSD) and cross-domain stance
detection (CDSD) [2,20, 18,3]. CTSD trains on one target and predicts stance
on a related one (e.g., training on ‘Apple iPhones’ and testing on ‘Apple Mac-
Books’). CDSD extends this by crossing domains. For example, previous studies
has grouped SemEval 2016 dataset targets of ‘Feminist Movement’ and ‘Legal-
ization of Abortion’ under the domain of ‘Women’s Rights’; a CDSD task might
train on ‘Women’s Rights’ and test on the unrelated domain of ‘Entertainment’
[20].
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Although CTSD and CDSD have opened promising avenues for extending
stance detection to more realistic scenarios, they also introduce substantial chal-
lenges that hinder effective generalization across targets and domains. The wide
variation in targets and domains makes training separate models impractical and
labeling new data costly [5, 3]. Although some methods use external knowledge to
improve generalization [12,7,19], they may struggle to capture domain-specific
patterns—an issue seen in models like SiamNet and bi-conditional encoders [15,
2, 3], which tend to overfit to source data and transfer poorly.

Transfer learning is a promising approach for improving model transferability
in both CTSD and CDSD by leveraging knowledge from a source target or do-
main to enhance performance on a new one. Unlike training from scratch, which
requires large labeled datasets and significant resources, transfer learning enables
efficient adaptation through previously learned representations. However, real-
world applications often have limited labeled data for new targets or domains.
To address this, transfer learning can be combined with few-shot adaptation,
where models are fine-tuned using a small but representative sample set. The ef-
fectiveness of this strategy hinges on selecting the most informative and context-
relevant examples. Current few-shot techniques in stance detection typically rely
on random or heuristic-based selection [8, 10, 7], which limits generalization. In
contrast, we propose the framework MLSD (Metric Learning-Based Few-Shot
Learning for Cross-Target and Cross-Domain Stance Detection), which inte-
grates metric learning-based sample selection with transfer learning to improve
adaptability and performance in both CTSD and CDSD tasks.

To implement this approach, MLSD uses metric learning to assess similarity
between text samples from different targets, enabling the selection of a small,
representative set of destination samples ( “few shots”) for fine-tuning. This strat-
egy constructs a task-specific embedding space that is sensitive to both domain
and target variation—placing similar examples closer and dissimilar ones farther
apart [17]. The selected few-shot samples are then used to adapt a stance model
initially trained on a source target, improving its ability to generalize across
domains and targets. Importantly, because MLSD is a model-agnostic few-shot
sample selection framework that can be integrated with any existing CTSD or
CDSD architecture, we demonstrate its effectiveness on two datasets, covering
four targets and two domains, using six deep learning models explored in prior
literature for stance detection. !

2 Background

Stance detection faces two key adaptation challenges: cross-target and cross-
domain scenarios. Earlier work has proposed conditional encoders [2], domain-
aligned transfer [20], shared-topic matching [18], and target-adaptive graphs [11].
However, these approaches often rely on stable domain overlap, explicit topic
labels, or costly graph construction. Models like SiamNet and BiCond [3] can

! MLSD implementation is available at https://github.com/parushgera/
mlsd-few-shot.
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generalize poorly, and adversarial methods with label embeddings [6] or topic-
guided contrastive learning require additional computation and accurate topic
annotations.

Few-shot learning helps adapt stance models to new targets or domains using
only a small labeled sample. Yet, many few-shot methods trade off efficiency or
generalizability: commonsense features [12], LLM prompt-tuning [7], conditional
generation [19], and semi-supervised variants often introduce extra overhead and
rely on randomly chosen shots.

Metric learning offers a promising solution for few-shot settings by construct-
ing representation spaces that capture semantic similarities between objects [17].
By learning to measure similarity, metric learning enables the selection of repre-
sentative examples, which supports more effective few-shot adaptation. Building
on this, MLSD combines metric learning with similarity-based sample selection
to improve CTSD and CDSD performance without relying on external resources.

3 Overview of MLSD

3.1 Step 1: Triplet Selection

MLSD uses metric learning to identify semantically representative samples from
the destination dataset for few-shot adaptation. Given a large destination dataset
of size Z, a small subset n < Z is selected based on semantic similarity to the
source target. To achieve this, MLSD constructs a task-specific embedding space
using a triplet-based objective, which encourages embeddings of similar examples
to be closer together and dissimilar examples to be pushed apart.

Each triplet consists of three elements: a source target sample (anchor), an-
other source sample (positive), and an unrelated target sample (negative) that is
contextually unrelated. The model learns to distinguish related from unrelated
samples by minimizing the triplet loss. To enhance the embedding’s discrimina-
tive capacity, MLSD incorporates hard negative mining; instead of selecting neg-
atives randomly, top-k challenging candidates are retrieved using a pre-trained
encoder and one is selected as the hard negative. This focuses training on the
most informative contrasts and improves generalization. To compute these dis-
tances, each element in a triplet—source (S), positive (P), or negative (IN)—is
encoded into an embedding vector, is encoded into an embedding vector, e(z),
using a contextual encoder such as BERT. The triplet loss is defined as:

Lsipler = max (0, d(e(A), e(P)) — d(e(A), e(N)) +m),

where d is the Euclidean distance and m is a margin hyperparameter enforcing
separation between positive and negative pairs.

In practical terms, this step essentially trains a similarity detection model
that learns whether any text sample is similar to examples in the source dataset.
This learned similarity is critical for the next stages as it enables the selection of a
small number of destination samples that closely match the source data, without
requiring training a full stance detection model on destination data that might
be either insufficient or prohibitively large to label.
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Notably, this step is model-agnostic and can be implemented using any suit-
able pre-trained encoder and standard optimizers such as Adam. In our exper-
imental setup, BERT-based embeddings, SBERT for hard negative mining, a
margin of 1.0, a learning rate of 5 x 107, a batch size of 64, and early stop-
ping over 10 epochs were used; these parameters can be adapted as needed for
different datasets and applications. We note that the quality of the embedding
space depends on the encoder; alternative or domain-adapted encoders may be
substituted to suit specific applications.

3.2 Step 2: Top-N Few-Shot Sample Selection

The trained similarity detection model is then used to rank destination sam-
ples and select the most informative few-shot examples for fine-tuning. For each
stance class ¢, destination samples D, are scored by how closely they align with
the learned source representation:

Top-N(c) = arg mgxlx fo(d;), d; € D,

where fy(d;) denotes the similarity detection model’s confidence score for sample
d; under learned parameters . In practice, this means the model from Step 1
filters and ranks new target samples to find those “closest” to the source, ensuring
that only the most relevant few are used for transfer learning. By prioritizing
representative examples, MLSD reduces the amount of manual labeling needed
while retaining high-quality samples for adaptation.

This stage assumes a small amount of labeled destination data per stance
class, consistent with the few-shot setting; fully unsupervised domain transfer is
out of scope. If classes are highly imbalanced, N can be adjusted per class or all
available labeled examples can be used for under-resourced classes.

For large destination datasets, scalability can be improved via approximate
nearest neighbor indexing or candidate pre-filtering. As with any similarity-
based approach, performance depends on sufficient semantic overlap between
source and destination. In cases of extreme divergence, performance may de-
cline, although experiments show consistent improvements even across different
domains.

3.3 Step 3: Cross-Target/Cross-Domain Stance Detection

In the final stage, a stance classifier—originally trained on the source target—is
fine-tuned with the selected few-shot samples from the destination target’s train-
ing set, then evaluated on its test set. These semantically aligned examples act
as high-quality proxies for the destination domain, helping the classifier adapt to
new targets or domains with minimal additional labeled data. By leveraging sim-
ilarity detection and targeted few-shot selection, this step upgrades the stance
model just enough to generalize well without requiring large new datasets.
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4 Experimental Methodology

We evaluated the MLSD framework for both CTSD and CDSD using two datasets—the
SemEval 2016 Task 6 Stance Detection dataset [14] and the Will-They-Won’t-
They (WT-WT) dataset [3], the largest publicly available English-language dataset

for stance detection consisting of tweets discussing mergers and acquisitions in

the healthcare and entertainment industries (Tables 1 and 2).

Table 1: Data distribution in the SemEval-2016 dataset [14].

Target Training Data Test Data

Y%Favor %Against %Neutral #Train %Favor %Against %Neutral # Test
Atheism (AT) 17.93 59.26 22.81 513  14.55 72.73 12.73 220
Climate Change (CC) 53.67 3.80 42.53 395 7278 6.51 20.71 169
Feminist Movement (FM) 31.63 49.40 18.98 664  20.35 64.21 15.44 285
Hillary Clinton (HC) 17.13 57.04 25.83 689 15.25 58.31 26.44 295
Legalization of Abortion (LA) 18.53 54.36 27.11 653 16.43 67.50 16.07 280
Donald Trump (DT) 20.94 42.26 36.80 530  20.90 42.37 36.73 177
Total 25.10 47.03 27.87 3,444 23.94 55.36 20.70 1,427

Table 2: Data distribution in the Will They Won’t They dataset [3].

Target Training Data Test Data

%Support %Refute %Comment %Unrelated Total %Support %Refute %Comment %Unrelated Total
Healthcare (HLT) 16.10 11.71 37.76 34.33 22,101 16.11 11.71 37.76 34.33 7,367
Entertainment (ENT) 47.74 2.45 8.23 41.75 11,141 47.74 2.45 8.23 41.75 3,714
Total 13.48 8.55 41.10 36.85 33,242 13.48 8.55 41.10 36.84 11,081

MLSD was compared against two baselines: (1) a standard setup that trains
on a source target and tests directly on a destination target without any few-
shot adaptation, and (2) a few-shot approach that selects adaptation samples
randomly. These Standard Training and Random Selection baselines reflect com-
mon practice in prior few-shot learning studies [8] and provide a fair basis for
isolating the effect of MLSD’s similarity-based selection.

The evaluation covers six deep learning models used in prior stance detection
work—four RNN-based, one CNN-based, and one BERT-based model [20, 13,9,
4]—all used in their original, unmodified form. By keeping model architectures
and hyperparameters fixed, we ensure that any performance differences arise
solely from the sample selection strategy. This controlled design allows a clear
comparison between MLSD and standard or random approaches under consistent
conditions. These include:

— BiLSTM [16]: Encodes text bidirectionally using LSTMs to capture con-
textual information from both directions.

— BiCond [2]: Uses a BiLSTM to encode targets and passes final states to
another BiLSTM for text encoding.

— CrossNet [20]: A BiLSTM model for CTSD with aspect attention to high-
light target-relevant text.
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— TAN [4]: Combines a bidirectional RNN and BiLSTM with target-specific
attention.

— TextCNN [9]: A CNN model for sentence classification using pre-trained
word embeddings.

— RoBERTa [13]: A transformer model pre-trained with masked language
modeling, optimized over BERT.

The MLSD-based few-shot selection was evaluated for n € {5,10, 15}, where
n is the number of few-shot samples used for domain adaptation. Notably, even
when selecting as few as 5, 10, or 15 samples, the proportion of destination data
used remains remarkably small: only about 0.02% of FM, LA, and HC, 0.03%
of DT, 0.001% of ENT, and just 0.0006% of HLT compared to typical 100-400-
shot baselines [8]. Experiments used multiple source targets (FM, LA, HC, and
DT), each paired with AT as an unrelated (negative) target during Step 1 for
hard negative mining. For CDSD, the ENT and HLT targets were paired with a
Politics domain constructed by combining HC and DT as the unrelated domain.

For robust and unbiased results, the standard training, random selection,
and MLSD pipeline—including triplet-based metric learning, few-shot selection,
and stance model fine-tuning—was run independently five times using different
random seeds. Although this means our baseline results may appear lower than
single best-run numbers reported elsewhere, this approach provides a more reli-
able estimate of typical model performance and avoids overstating results due to
random chance. For each seed, the similarity detection model was trained from
scratch, the top-n few-shot samples were selected anew, and the stance detection
model was fine-tuned and evaluated on the destination target. Final macro-F;
scores are reported as the mean across these five fully independent runs, pro-
viding a reliable estimate of typical performance than reporting only the best
single run, as sometimes done in prior work [8,1, 21].

5 Results

Tables 3 and 4 present the macro-average Fj-scores for CTSD. In all tables,
source — destination indicates the direction of domain or target transfer. Across
all models, integrating the MLSD framework consistently outperformed both the
standard approach and random sample selection. For cross-domain settings us-
ing the WT-WT dataset, the original authors [3] reported poor generalization
for the ENT and HLT targets, with Fj-scores of 37.77 for HLT — ENT and
33.62 for ENT — HLT. As shown in Table 5, MLSD led to substantial im-
provements in these scenarios. Additional CDSD experiments (Table 6) within
the SemEval dataset further demonstrate MLSD’s effectiveness when the source
and destination targets are contextually distinct. On average, MLSD increased
performance by 11.72% for FM — HC, 7.20% for FM — DT, 31.32% for ENT
— HLT, 29.87% for HLT — ENT, 7.27% for LA — FM, 6.56% for FM — LA,
6.47% for HC — DT, and 7.33% for DT — HC, with values averaged across all
classifiers. These results show that MLSD is highly effective in enhancing stance
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detection performance, particularly in cross-domain scenarios where traditional
methods often struggle.

An interesting observation is that the RoBERTa model did not achieve gains
as large as the CNN- and RNN-based models. This may reflect RoBERTa’s
reliance on extensive pre-training, which already captures much of the gener-
alization needed for stance detection, leaving less room for improvement from
MLSD. In contrast, the CNN and RNN models, which do not benefit from such
large-scale pre-training, gain more from MLSD’s targeted few-shot selection, en-
hancing their ability to generalize across both cross-target and cross-domain
settings.

Table 3: CTSD macro-average Fj-score across five seeds and n € 5,10, 15 shots.
MLSD significantly outperforms random selection for LA — FM and FM — LA
(p < 0.05).

LA - FM FM — LA
Model Standard Random MLSD Standard Random MLSD
BiCond 36.63%  31.84% 43.30% 35.13%  30.94% 42.67%
BIiLSTM 35.99%  33.03% 42.20% 38.73%  29.69% 39.98%
CrossNet 35.18%  37.01% 41.61% 38.69%  37.80% 39.72%
RoBERTa 28.79%  30.56% 32.15% 27.88%  28.47% 30.95%
TAN 35.68%  35.77% 39.96% 36.00%  35.54% 38.89%
TextCNN 26.69%  30.07% 42.38% 26.16%  32.50% 42.11%

Table 4: CTSD macro-average Fj-score across five seeds and n € {5,10,15}
shots. MLSD significantly outperforms random selection for both HC — DT
and DT — HC (p < 0.05, paired t-test).

HC — DT DT — HC
Model Standard Random MLSD Standard Random MLSD
BiCond 36.35%  31.78% 42.59% 36.70%  30.44% 43.04%
BiLSTM 38.53%  30.77% 40.64% 38.15%  31.17% 41.46%
CrossNet 35.09%  37.39% 40.47% 34.98%  36.17% 40.84%
RoBERTa 29.21%  30.07% 31.58% 29.53%  30.28% 31.71%
TAN 36.41%  35.14% 37.79% 35.01%  35.19% 38.91%

TextCNN 26.79%  30.77% 41.82% 26.25%  30.41% 41.73%
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Table 5: CDSD macro-average Fj-score across five seeds and n € {5,10,15}
shots. MLSD significantly outperforms random selection for both ENT — HLT
and HLT — ENT (p < 0.05, paired t-test).

ENT — HLT HLT — ENT
Model Standard Random MLSD Standard Random MLSD
BiCond 29.84%  22.36% T1.92% 36.46%  28.55% 68.92%
BIiLSTM 31.43%  34.19% 71.51% 35.80%  30.95% 68.49%
CrossNet 36.13%  39.30% 70.79% 33.71%  33.29% 67.89%
RoBERTa 21.51%  24.26% 24.94% 20.67%  23.23% 24.06%
TAN 28.66%  32.87% 62.82% 34.63% 31.10% 62.91%
TextCNN 29.48%  27.81% 66.14% 30.82%  25.64% 60.31%

Table 6: CDSD macro-average Fj-score across five seeds and n € {5,10,15}
shots. MLSD significantly outperforms random selection for both FM — HC
and FM — DT (p < 0.05, paired t-test).

FM — HC FM — DT
Model Standard Random MLSD Standard Random MLSD
BiCond 28.51% 35.67% 44.84% 34.00% 28.35% 40.71%
BIiLSTM 33.45% 27.01% 47.86% 34.86% 29.19% 35.02%
CrossNet 30.06%  30.57% 45.60% 32.08%  29.66% 38.27%
RoBERTa 29.20% 32.85% 34.62% 31.76% 31.25% 34.28%
TAN 33.37% 32.93% 42.76% 36.34% 32.23% 36.75%
TextCNN 22.25% 28.63% 42.35% 23.79%% 28.35% 36.79%

6 Conclusion and Limitations

This work introduced MLSD, a novel metric learning-based framework for few-
shot cross-target and cross-domain stance detection. By combining triplet loss
with hard negative mining, MLSD effectively identifies the most informative
destination samples to fine-tune pre-trained stance models, consistently out-
performing random selection—especially when targets or domains differ signif-
icantly. The results show that robust stance detection can be achieved with
minimal additional labeling effort, requiring only a handful of carefully selected
examples.

However, MLSD has important practical considerations. Its performance de-
pends on the quality of the pre-trained embeddings, and the hard negative min-
ing step adds computational overhead during the similarity training phase. Al-
though MLSD greatly reduces annotation needs, it still requires access to a small
number of labeled examples for each destination target to enable effective few-
shot adaptation. Future work could explore fully unsupervised extensions, alter-
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native encoder architectures, or integration with large language models to further
improve generalization while keeping the framework lightweight. Overall, MLSD
demonstrates that metric learning can meaningfully advance few-shot stance de-
tection in realistic cross-target and cross-domain scenarios where labeled data is
limited.
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