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Abstract. Translating cognitive models across heterogeneous cognitive
architectures is a critical yet unresolved challenge in computational cog-
nitive science, with significant implications for model reusability, inter-
operability, and cross-framework validation. This paper explores the fea-
sibility of using a Large Language Model (LLM) to facilitate automated
translation between ACT-R and Soar, two widely adopted cognitive mod-
eling frameworks. We explore the feasibility of LLM-assisted translation
and identify translation patterns, offering a methodological foundation
for future quantitative evaluation. Through a series of controlled transla-
tion experiments and iterative prompt engineering cycles, we identify and
validate a generalized translation pattern that supports bi-directional
model interoperability. Our findings reveal that while LLMs demonstrate
promising capabilities in syntactic scaffolding and partial semantic map-
ping, human-in-the-loop intervention remains critical for ensuring exe-
cutable and cognitively plausible model outputs. The study offers in-
sights into the potentials and limitations of leveraging LLMs for cross-
architecture translation and provides a methodological foundation for
future research on automated cognitive model transformation and hy-
brid architecture integration.

Keywords: Cognitive architecture · LLMs · ACT-R · Soar · Model
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1 Introduction

The exploration of human cognition and decision-making processes has been a
longstanding pursuit in cognitive science and artificial intelligence research [4,
18, 5]. Two prominent frameworks for cognitive modeling are ACT-R [2] and
Soar [10]. These frameworks serve as robust tools for simulating human behav-
ior across various cognitive tasks. However, the traditional process of develop-
ing models within the ACT-R and Soar entails complex coding, thus delaying
widespread adoption and accessibility.

The translation between cognitive architectures—specifically from Soar to
ACT-R and vice versa—represents a challenging yet crucial endeavor in cogni-
tive science and AI research as each possesses distinct strengths, representational
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approaches, and architectural designs. As a result, interoperability between these
frameworks has been limited. The need for robust translation mechanisms arises
from their foundational differences. ACT-R models cognition through buffer ma-
nipulation and rule-based procedural execution within a modular system. In
contrast, Soar emphasizes operator-based control hierarchies within a unified
working memory and decision cycle. These divergent paradigms yield cognitive
models that are structurally and semantically incompatible without significant
adaptation. Importantly, translation across these frameworks is not merely a syn-
tactic transformation; it requires a conceptual mapping of cognitive processes,
memory structures, and control flow mechanisms. Enabling such interoperability
supports comparative model evaluation, replication of findings across architec-
tures, and reuse of cognitive task logic in hybrid or evolving frameworks. Prior
efforts have attempted to implement the same cognitive model across both ACT-
R and Soar to study architectural correspondences and differences, highlighting
the challenges in translation fidelity and semantic alignment [6, 12].

This study emphasizes LLM-assisted translation to reduce the manual bur-
den of porting models across architectures and to leverage natural language
understanding in formal model development workflows. Recent advancements in
Large Language Models (LLMs), such as ChatGPT developed by OpenAI, offer
promising avenues for facilitating this translation process. ChatGPT demon-
strates remarkable proficiency in understanding and generating human-like lan-
guage across diverse contexts and tasks. Harnessing its capabilities for translating
between Soar and ACT-R not only bridges the gap between these cognitive ar-
chitectures but also opens new opportunities for novel applications and insights
in cognitive modeling research. Recent studies have explored how LLMs can be
integrated with cognitive architectures or leveraged to augment symbolic rea-
soning tasks, suggesting a growing interest in hybrid cognitive-symbolic systems
[15, 7].

We conduct a systematic evaluation of LLM-assisted translation across rep-
resentative cognitive tasks, focusing on the transformation of declarative knowl-
edge structures and production rules. Our methodology combines prompt engi-
neering with human-in-the-loop refinement to assess translation fidelity, identify
recurrent failure patterns, and establish prompt strategies that improve reliabil-
ity. These findings offer new insights into the role of LLMs in supporting cognitive
model development and lay the groundwork for future work in cross-architecture
interoperability.

2 Related Work

2.1 A Common Model of Cognition

The Common Model of Cognition (CMC) embodies a unified theory of cognition
[13, 9], a theoretical framework that presents a model of human cognition codified
as a computational architecture. The CMC is a brain-inspired framework vali-
dated by large-scale neuroscience data. The CMC identifies core components and
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processes fundamental to human cognition, including memory, perception, mo-
tor actions, and decision-making. The model assumes a cyclical process where
these components interact to produce human behavior. The CMC includes a
feature-based declarative long-term memory, a buffer-based working memory, a
system for pattern-directed action invocation stored in procedural memory, and
specialized systems for perception and action [17].

The CMC integrates essential features from various cognitive architectures
[10, 2, 8], which propose a set of fixed mechanisms to model human behavior,
functioning akin to agents and aiming for a unified representation of the mind.
By using task-specific knowledge, these architectures not only simulate but also
explain behavior through direct examination and real-time reasoning tracing.
Two representative cognitive architectures related to the CMC are ACT-R and
Soar [9], which have been commonly used for modeling human cognition and
decision-making processes.

2.2 Cognitive Architectures: ACT-R and Soar

ACT-R is a cognitive architecture and a theory of simulating and understanding
human cognition[1, 14]. Its theory is embodied in the ACT-R software, through
which we can construct models that can store, retrieve, and process knowledge,
as well as explain and predict performance[3]. There are currently two kinds of
knowledge representations in ACT-R, and they are declarative knowledge and
procedural knowledge. Declarative knowledge consists of chunks of memory (e.g.,
apple is a kind of fruit), while procedural knowledge performs basic operations,
moves data among buffers, and identifies the next instructions to be executed
(e.g., to submit your answer, you have to click submit bottom). When the model
is driving a bus in first-person perspective, these pieces of information will con-
tain information such as what visual items are presented to look at and what
tasks to do next.

Soar is a general cognitive architecture that provides a computational infras-
tructure that resembles the cognitive capabilities exhibited by a human. Soar
implements knowledge-intensive reasoning that enables execution of rules based
on the context. It also has the capability to integrate learning into the intel-
ligent agent using chunking or reinforcement learning. Soar has its origins in
the groundbreaking work done by Newell and Simon around the 1950s through
the mid-1970s, also inspired by the ”General Problem Solver” created by George
Ernst and Newell. While ACT-R was designed to model human behavior, Soar
was inspired by it. Current understanding and hypotheses regarding cognitive
architecture are incorporated into Soar 9, which has been in development for over
30 years and continues to evolve gradually. Soar’s general computing concept is
based on: objectives, problem spaces, states and operators [10, 13]. Soar encom-
passes multiple memory constructs (e.g., semantic, episodic, etc.) and learning
mechanisms (e.g., reinforcement, chunking etc.) and is a programmable architec-
ture with an embedded theory. This enables executing Soar models on embedded
system platforms and studying the design problem through rapid prototyping
and simulation.
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3 A Case Study on ACT-R and Soar Translation

To evaluate the feasibility of LLM-assisted translation between cognitive archi-
tectures, we developed functionally equivalent counting models in both ACT-R
and Soar. Each model implemented production rules to initialize, increment,
and terminate a simple counting task [10, 3]. These models served as controlled
translation targets, enabling focused assessment of structural fidelity and seman-
tic alignment in translated outputs. Our goal was to generate the Soar model
from its ACT-R counterpart and vice versa, using ChatGPT as the translation
engine.

Our translation framework (Figure 1) follows a structured pipeline involving
prompt initialization, model generation, human-in-the-loop (HITL) correction,
and simulation. ChatGPT is primed with architectural and syntactic knowledge
before producing translated models. Human reviewers refine these outputs itera-
tively until the result satisfies syntactic validity and behavioral equivalence. Full
translation examples and prompt patterns are discussed in Sections 4 and 5.

Fig. 1. Iterative human-in-the-loop methodology for translating cognitive models be-
tween ACT-R and Soar using ChatGPT.

Each translation experiment was structured into clearly defined phases to
ensure consistency and reproducibility. In the initialization phase, prompts were
carefully constructed to encode both the semantic and syntactic specifications of
the source model. These prompts described the cognitive task, the architecture-
specific control flow, and the expected memory representations. For ACT-R,
prompts included detailed descriptions of buffer structures and chunk types. For
Soar, prompts described working memory elements (WMEs), operator proposal-
application logic, and substate control structures.

ChatGPT (v3.5 and 4o) was then queried to generate the translated model.
As expected, the general-purpose nature of the LLM led to early-stage outputs
that exhibited structural inconsistencies and semantic omissions. Common er-
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rors included incorrect buffer-slot mappings in ACT-R, misassigned WMEs in
Soar, and invalid or fragmented rule conditions. These outputs were reviewed
and we provided targeted feedback, diagnosing model violations, clarifying mis-
understood constructs, and suggesting domain-consistent representations. This
feedback was integrated into subsequent prompt revisions, forming the basis
of the iterative HITL loop. Refinement continued until each translated model
passed expert verification for syntactic correctness and cognitive equivalence. All
iterations, modifications, and expert interventions were logged to facilitate trace-
ability, meta-analysis, and the identification of generalizable translation strate-
gies. Expert verification in our study was defined as the combined assessment
of (a) syntactic correctness (whether the model compiled and ran in the target
architecture), (b) semantic fidelity (whether task logic and rule conditions were
preserved), and (c) execution validity (whether the translated model produced
expected outputs such as correct counts). These criteria guided acceptance or
rejection of each translation stage.

Soar Translation (Excerpt)

sp {apply*initialize-count
(state <s> ^operator <o>)
(<o> ^name initialize-count)
-->
(<s> ^count 1 ^end 6)}

ACT-R Translation (Excerpt)

(p initialize-count
=goal>

ISA count-goal
count nil
end =end

==>
=goal>

count 1
!output! (print-number 1))

Fig. 2. Representative production rules from the LLM-generated translations of a
counting task in Soar and ACT-R. Full model listings are available in our project
repository at https://github.com/ParthGaneriwala/llm-cognitive-model-translation.

4 Translation Results

We conducted bidirectional translation tasks between Soar and ACT-R and eval-
uated their syntactic correctness, task completion behavior, and architectural
alignment. Successful execution of the translated counting models (see Figure 2)
validated that the LLM-generated outputs—when refined through human-in-
the-loop correction—preserved task logic across both frameworks. While the
evaluation was primarily qualitative, we also recorded basic metrics across the
translation experiments (Table 2). These results demonstrate that while initial
LLM outputs are error-prone, structured prompts and HITL corrections reliably
converge to executable models.

The translation from Soar to ACT-R posed a unique set of representational
and structural challenges. Soar’s cognitive control is governed by the dynamic
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Direction # Attempts Avg. Iter Init Syntax Err Success After Iter. 2
ACT-R → Soar 6 2.5 67% 100%
Soar → ACT-R 6 2.2 72% 100%
Table 1. Quantitative summary of translation attempts showing the number of at-
tempts, average prompt-correction iterations, percentage of initial syntax errors, and
success rate after two iterations.

creation of problem spaces, substate formation, and operator-based elaboration,
all of which are orchestrated through a cyclical decision process. Mapping these
procedural dynamics into ACT-R required conceptual flattening of Soar’s hier-
archical state management into ACT-R’s localized buffer-centric model of cog-
nition. In particular, Soar operators—often defined through interdependent pro-
pose and apply rules with implicit working memory manipulations—had to be
decomposed into ACT-R productions with explicitly stated preconditions and
buffer actions. Soar’s working memory elements (WMEs), structured as identi-
fier–attribute–value triples, were converted into ACT-R chunks that conform to
a fixed chunk-type specification. This transformation required flattening deeply
nested WMEs and re-encoding their semantics to match ACT-R’s declarative
memory representation. Additionally, ACT-R’s production rules necessitate pre-
cise control over the flow of information between goal and retrieval buffers, which
demanded the explicit encoding of operations that are otherwise handled implic-
itly in Soar through preference resolutions and substate activations.

Human oversight played a critical role in ensuring the cognitive and oper-
ational fidelity of the translated ACT-R models. We verified that transitions
and task logic embedded in Soar were properly restructured into production se-
quences and chunk updates in ACT-R. Furthermore, implicit control structures
in Soar—such as impasse resolution, subgoal formation, and termination condi-
tions—had to be explicitly represented and tracked in ACT-R, often requiring
the introduction of additional productions or buffer manipulations.

The reverse translation, from ACT-R to Soar, involved a different set of
technical challenges. ACT-R’s rule-based interaction across modular buffers (e.g.,
goal, retrieval, visual) had to be reinterpreted in terms of Soar’s unified working
memory and operator-driven decision-making. Declarative memory chunks in
ACT-R, typically accessed through retrieval buffers and matched using slot-value
constraints, were translated into WMEs with explicit graph-like relationships in
Soar. In addition, ACT-R’s production rules, which encode procedural knowledge
using a reactive stimulus-response model, lacked a one-to-one structural analogue
in Soar’s elaboration-operator structure. Consequently, high-level ACT-R rules
often had to be decomposed into sequential Soar operators that explicitly track
intermediate state transitions and control flow.

Across both directions, the iterative refinement of LLM-generated code was
essential. ChatGPT’s initial outputs frequently exhibited syntactic violations,
architectural inconsistencies, or semantically ambiguous constructs. The human-
in-the-loop (HITL) correction cycle enabled the systematic revision of prompts,
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reinforcement of architectural constraints, and guided transformation of am-
biguous outputs into executable models. This iterative feedback loop was instru-
mental not only in correcting structural deficiencies but also in distilling robust
prompt patterns for future translation tasks.

5 Translation Patterns

Analysis of the translated models revealed a series of systematic translation pat-
terns applicable across both Soar-to-ACT-R and ACT-R-to-Soar conversions.
These patterns emerged through iterative prompt execution cycles and were re-
inforced through expert interventions and model verification. The results high-
light how large language models, when scaffolded appropriately, can facilitate
meaningful transformation of symbolic cognitive systems across architectural
boundaries.

5.1 Structural and Semantic Transformation

One of the most prevalent translation strategies involved the structural flatten-
ing and semantic decomposition of rules and control logic. In the Soar-to-ACT-R
direction, hierarchical operator structures and nested propose–apply cycles were
decomposed into localized ACT-R productions with clearly defined preconditions
and buffer-manipulating actions. This flattening was essential for aligning Soar’s
state-anchored, graph-structured control representations with ACT-R’s modular
buffer architecture. Similarly, implicit control flow constructs in Soar—such as
substate management, operator preference evaluation, and automatic impasse
resolution—had to be made explicit in ACT-R. This often required introduc-
ing additional productions or manually encoding transitions that Soar would
otherwise handle implicitly.

In the reverse direction, ACT-R’s concurrent buffer access and slot-specific
reasoning required decomposition into Soar’s operator-centric processing model.
ACT-R rules that simultaneously matched conditions in multiple buffers were
split into sequences of Soar productions, each tied to an operator propose–apply
cycle. To preserve execution fidelity, temporal coordination and rule triggering
logic had to be carefully distributed across the Soar model’s elaboration and
application stages.

5.2 Knowledge Representation Mapping

Translating models across architectures necessitated substantial reformatting of
knowledge structures to fit the semantic and syntactic expectations of the target
system. Soar’s working memory elements (WMEs), represented as flexible at-
tribute–value graphs anchored in a global state identifier, were transformed into
ACT-R chunks that follow typed schema declarations with fixed slot-value pairs.
This process involved flattening multi-level WMEs, reassigning variable names,
and introducing new chunk-types to capture intermediate state distinctions.
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Conversely, ACT-R’s declarative memory representations—comprising named
chunks stored and retrieved through buffer access—were mapped to Soar’s un-
typed and more flexible WME graph structure. This required re-encoding slot-
value relationships using attribute triples, and in many cases, maintaining iden-
tity across model states via consistent variable binding. Maintaining the logical
equivalence of relational mappings during this transformation process was non-
trivial. In particular, references to previously stored chunks in ACT-R needed
to be carefully reconstructed in Soar using nested WMEs and symbolic refer-
ences. The structural integrity and referential cohesion of task-critical knowledge
required detailed expert inspection and iterative reformulation.

5.3 Prompt Engineering and Expert Refinement

The effectiveness of LLM-assisted translation was strongly influenced by the
structure and granularity of prompts. Prompts that supplied layered architec-
tural context—including definitions of memory systems, rule syntax, control flow,
and task framing—significantly improved output quality. Decomposing transla-
tion tasks into sequential subprompts (e.g., defining chunk types, then generating
rule scaffolds, then simulating behavior) enabled clearer cognitive mappings and
reduced syntactic errors. These findings are consistent with broader research on
prompt engineering and human-in-the-loop (HITL) frameworks for LLMs, which
emphasize the role of task-specific prompts and iterative refinement in guiding
reliable model behavior [16, 11].

Explicit error feedback also played a crucial role. When initial generations
produced invalid or incomplete outputs, providing the LLM with direct debug-
ging signals—such as “missing slot assignment,” “incorrect buffer reference,” or
“invalid syntax for operator application”—often led to materially improved re-
sults on subsequent iterations. This pattern reinforces the LLM’s ability to refine
outputs when guided by corrective human intent.

Human-in-the-loop (HITL) review proved essential across all translation di-
rections. Initial translations frequently exhibited architectural violations such as
goal state mismanagement, invalid chunk references, or malformed working mem-
ory assertions. Domain experts intervened to correct logic, rephrase prompts, and
align generated structures with the expectations of the target cognitive archi-
tecture. These corrections were incorporated into prompt refinements, resulting
in the gradual development of reusable prompt templates. The HITL pattern
functioned not only as a safeguard but also as an iterative calibration mecha-
nism for the LLM’s internal representation of cognitive modeling principles. To
demonstrate how prompt structure influenced translation outcomes, we include
representative prompts from the Soar-to-ACT-R translation direction. As an
example, a typical initialization prompt reads:

You are a code translator between Soar and ACT-R...

Additional prompt types and usage scenarios are summarized in Table 2. These
prompt forms were critical in aligning model outputs with valid syntactic struc-
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Table 2. Prompt types used during translation experiments

Prompt Type Purpose Example Pattern

Initialization Prompt Establish role, task scope, and archi-
tectural context

You are a code
translator between Soar
and ACT-R...

Declarative Structure
Prompt

Define memory schema and chunk
types or WMEs for a task

Define chunk-types for
representing count-order
and goal.

Procedural Rule
Prompt

Generate a rule in the target archi-
tecture from a source rule

Translate this Soar
propose rule into an
ACT-R production.

Sequencing Prompt Scaffold multi-step outputs for com-
plex tasks

Step 1: define chunk
types. Step 2: generate
initial production.

Debugging Feedback
Prompt

Correct syntax or semantic errors in
prior output

You forgot the buffer
condition in the goal
module. Fix that.

Post-execution
Prompt

Adjust model based on execution
outcome or trace errors

The model fails when
count reaches 6. Add a
termination rule.

tures and achieving semantic equivalence. Debugging prompts in particular played
a key role in triggering self-correction within ChatGPT’s generative loop.

6 Conclusion

This study explored the feasibility of translating cognitive models between ACT-
R and Soar using large language models. We found that, although initial outputs
often required significant correction, structured prompt engineering and human-
in-the-loop refinement enabled successful, semantically faithful translations. The
identification of recurring translation patterns—such as flattening, explicit mem-
ory reformulation, and syntax re-alignment—provides a basis for developing
more scalable and reliable translation workflows. While the HITL framework
enables reliable translation, it requires expert-level review to correct architec-
tural violations. The general-purpose nature of ChatGPT introduces brittleness
in unfamiliar task domains, and the current framework is constrained to well-
scoped models such as counting. Scaling to multi-module or perceptual-motor
tasks remains an open challenge. We also observed occasional hallucinations (e.g.,
non-existent buffer names), which were systematically identified during expert
review and corrected through prompt refinement. Future work will explore auto-
mated correction strategies, hallucination detection, richer cognitive tasks, and
quantitative benchmarks for accuracy and human effort reduction.
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