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Abstract. Cybersecurity has traditionally focused on exploiting sys-
tem vulnerabilities within computing devices in targeted organizations.
However, as organizations have built increasingly robust defensive in-
frastructures, attackers have shifted their strategies to exploit human
vulnerabilities, or the weaknesses of end users who operate those sys-
tems using social engineering techniques. In response, many organiza-
tions have adopted user training and awareness programs to reduce the
impact of such threats. However, quantitative research that analyzes
the mechanisms by which behavioral and psychological vulnerabilities
lead to actual security incidents remains underdeveloped. In particular,
due to practical constraints, few studies have examined how dynamically
changing psychological states such as fatigue and job performance affect
a user’s phishing susceptibility. To overcome these limitations, simula-
tion researchers have attempted to combine various empirical findings
to model dynamically fluctuating human factors and their effects on
phishing susceptibility within simulation environments. However, as such
models become more sophisticated, the underlying equations also become
more complex, and repeatedly updating them at every simulation time
step can result in substantial computational costs. To address the re-
sulting performance degradation and improve the simulation speed, this
study introduces a surrogate modeling approach based on a multilayer
perceptron (MLP). The proposed method replaces the complex phish-
ing susceptibility model with an efficient MLP surrogate that minimizes
accuracy loss while significantly improving the computational efficiency
and scalability of the simulation.
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1 Introduction

In the past, cybercriminals primarily achieved their objectives by identifying
and exploiting technical vulnerabilities in the computing devices operated by
organizations, relying on purely technical methods such as Distributed Denial of
Service (DDoS) attacks or web shell injections. However, as defensive technolo-
gies such as antivirus software, intrusion detection systems, and firewalls have
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advanced, it has become increasingly difficult for attackers to breach targeted
organizations and achieve their goals using technical methods alone. As a re-
sult, attackers have shifted their strategies toward social engineering techniques
that exploit human error within organizations, using these methods to bypass
sophisticated technical defenses and infiltrate target organizations in order to
accomplish their objectives.

As this trend continues to grow, it is now reported that, according to IBM,
more than 95% of all security incidents are caused by human error, with the most
common examples being the downloading of malicious attachments or clicking on
unsafe URLs [1]. As cyberattacks have evolved, cybersecurity researchers have
increasingly focused on identifying which human factors make individuals more
vulnerable to attacks that target human weaknesses, such as social engineering
and spearphishing. In this context, research on phishing susceptibility has be-
come more active, aiming to analyze how easily individuals fall victim to phishing
attacks and how various human characteristics influence this susceptibility. As a
result, many empirical studies have examined the relationship between phishing
susceptibility and a variety of factors, such as personality traits, age, gender,
educational background, cybersecurity-related experience and beliefs, and work
commitment style [2]. However, most previous research has primarily focused
on relatively static human factors that do not change easily. While these static
factors certainly play an important role in determining an individual’s suscepti-
bility to phishing attacks, dynamic human factors that fluctuate over time, such
as fatigue and job performance, can also have a significant impact in practice.
Nevertheless, these dynamic factors have been largely overlooked in empirical
research, as it is inherently difficult to control and capture their moment-to-
moment variability, making it challenging to clearly analyze their relationship
with phishing susceptibility.

To address this limitation in real-world scenarios, cybersecurity researchers
have attempted to realistically model dynamic human factors such as memory re-
cency, fatigue, perceived vulnerability, and job performance, and their influence
on phishing susceptibility, by computationally modeling different human factors
using regression models derived from various empirical studies [3]. However, as
the model becomes more complex, involving more equations and rules for human
factor modeling and requiring more frequent updates of dynamic human factors,
the computational cost inevitably increases, degrading the simulation speed and
scalability. To overcome this issue, we propose a surrogate approach [5] based
on a multilayer perceptron (MLP) neural network [4], which predicts phishing
susceptibility as a function of both static (age, gender, personality traits) and
dynamic (fatigue and job performance) human factors. In this study, we first
generate a large-scale synthetic dataset by systematically varying fatigue and
job performance within a simulation framework based on established empirical
models. Using this dataset, we train and evaluate an MLP model designed to
flexibly respond to incremental changes in dynamic human factors. Our results
demonstrate that this approach significantly improves simulation speed and scal-
ability while incurring minimal loss in prediction accuracy.
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2 Related Works

Empirical researchers in the field of cybersecurity have consistently explored how
various human factors affect phishing susceptibility [2]. For example, Eftimie et
al. conducted empirical phishing simulations to analyze the impact of age, gen-
der, and Big Five personality traits on susceptibility to spearphishing attacks [6].
Ribeiro et al. also empirically investigated how factors such as age, gender, tech-
nological competence, education level, income, routine internet activities, and
knowledge of phishing influence phishing susceptibility [7]. However, most previ-
ous empirical studies have mainly focused on the relationship between phishing
susceptibility and relatively static human factors.

Simulation researchers have also actively studied how to model the phishing
susceptibility of virtual humans in simulation environments. For example, Burns
et al. leveraged social science theories to determine agent security levels and
their influence on phishing rates [8]. Shin et al. proposed a method that assigns
each agent unique phishing susceptibility scores before and after training (PSBE
and PSAE) using regression models derived from empirical studies, particularly
the findings of Eftimie et al. [6], with simulation outcomes calibrated to em-
pirical results [9, 10]. Their framework was further extended to incorporate the
effects of dynamic human factors such as job performance, fatigue, and perceived
vulnerability [11].

However, their modeling approach had two significant limitations. First, the
behavioral model fundamentally relied on switching between two extreme values,
PSBE and PSAE, based on the state of human factors. While the probability
of using each value could be adjusted, small changes in dynamic human factors
such as fatigue or job performance were not reflected in a continuous or pro-
portional manner in phishing susceptibility. Second, as their model incorporated
an increasing number of regression models and rules, the simulation became
substantially slower and scalability issues emerged due to the high computa-
tional cost. To overcome these limitations, this paper proposes a novel approach
for modeling phishing susceptibility using a multilayer perceptron (MLP) neural
network. The proposed model is designed to (1) respond more flexibly to gradual
changes in human factors, enabling more realistic and interpretable simulation
of phishing risk, and (2) improve simulation speed and scalability.

3 Data Farming

The objective of this study is to develop an accurate surrogate model [5] for pre-
dicting phishing susceptibility using a multilayer perceptron (MLP) neural net-
work [4]. The proposed model is designed to estimate the phishing susceptibility
of individual user agents within a simulation by comprehensively incorporating
both static and dynamic human factors, including age, gender, Big Five person-
ality traits, fatigue, and job performance. However, to the best of our knowledge,
currently there is no empirical data set that contains all of these human factors
together with actual measurements of phishing susceptibility. To address this
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limitation, we adopted the behavioral framework proposed by Shin et al., which
models the effects of fatigue and job performance on phishing susceptibility [11].
Based on this framework, we applied a data farming technique [12], commonly
used in simulation-based research to generate the synthetic data required for
model training.

We first imported the dataset of 235 virtual end user agents used by Shin
et al. [10]. Each agent is characterized by demographic information (age and
gender), psychological attributes (the Big Five personality traits: openness, con-
scientiousness, extraversion, agreeableness, and neuroticism), and two empiri-
cally estimated probabilities: phishing susceptibility before education (PSBE)
and after education (PSAE). These values were calculated based on regression
models developed in previous phishing studies [6]. To simulate the influence of
dynamic human factors, we defined two continuous variables: fatigue and job
performance. Both fatigue and job performance values ranged from 1.0 to 5.0 in
increments of 0.2, resulting in a total of 441 unique fatigue & job performance
combinations. For each user and each of these 441 combinations, we generated
100 synthetic observations, resulting in 44,100 simulation data points per user
and a total of 10,363,500 (44,100 x 235) simulated data points.

In each simulation instance, as in the simulation study by Shin et al. [11], we
applied the regression model from the empirical research of Hassan and Morsy,
which describes the effect of fatigue on job performance [13]. Both variables were
converted to a scale from 1 to 5, and the following transformation was then used
to calculate the final job performance score.

Final Job Performance = max (Job Performance — 0.34 X Fatigue, 1)

This formulation reflects the assumption that increased fatigue impairs job
performance. The resulting value was bounded below by 1.0 to reflect a real-
istic minimum performance floor. We then computed a probabilistic decision
threshold based on the normalized final performance:

Final Job pe;«formance — 1) x 100, 0)

Threshold = max ((

This threshold represents the probability (in percentage) that a user success-
fully recalls and applies their previous phishing training, as described by Shin et
al. [11]. In every simulation tick, for each end user agent, a random integer from 0
to 100 was sampled. If this value was less than the computed threshold, the sim-
ulation applied PSAE, assuming the user retained the training effect. Otherwise,
it used PSBE, modeling a lapse in training recall. Thus, the final phishing sus-
ceptibility score for each scenario was determined as a binary stochastic outcome
based on the user’s dynamic state.

Each row of the final dataset contains the static user characteristics, the
dynamic fatigue and job performance values, and the assigned phishing suscep-
tibility label for that simulation instance. For each end user agent, phishing
susceptibility was generated 100 times for every specific combination of fatigue
and job performance according to the formula above, with a higher final job
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performance leading to a higher frequency of selecting the PSAE value. This
synthesized dataset constitutes a large-scale, high-resolution behavioral resource
that captures the subtle interactions between static and dynamic human factors,
and serves as the foundation for training the machine learning model.

Finally, the entire data-farmed dataset was divided into training and test
sets. Specifically, 80% of the data, corresponding to 188 agents (about 8,290,800
data points), was used for training, while the remaining 20%, corresponding to
47 agents (about 2,072,700 data points), was used for testing.

4 Phishing Susceptibility Prediction Model

In this study, we designed and implemented a neural network model based on
a multilayer perceptron (MLP) [4] to simulate and predict individual suscep-
tibility to phishing attacks. Inspired by the neural architecture of the human
brain, this model can process multiple input features in parallel and effectively
capture complex, nonlinear relationships among variables [18]. These character-
istics make the model particularly well-suited for accurately modeling the impact
of human behavioral traits on security-related outcomes.

4.1 Input Variables

The model takes as input a total of nine human factor variables, categorized as
follows:

Demographic factors: Age (21-56), Gender (0-1)

Personality traits: Openness (20-80), Conscientiousness (20-80), Extraversion
(20-80), Agreeableness (20-80), Neuroticism (20-80)

Dynamic factors: Fatigue (1-5), Job Performance (1-5)

4.2 Model Architecture

The MLP model is implemented as a three-layer fully connected feedforward
neural network [15], defined as follows:

Input layer: 9 input features

Hidden Layer 1: 64 neurons, ReLU activation [14]

Hidden Layer 2: 32 neurons, ReLU activation [14]

Output Layer: 1 neuron, Sigmoid activation [15] (to produce probability be-
tween 0 and 1)

4.3 Loss Function & Training

The model was implemented using the PyTorch deep learning framework [16].
It was trained using the Binary Cross Entropy Loss (BCELoss) [19], a standard
choice for binary classification tasks where outputs represent probabilities. Opti-
mization was handled by the Adam optimizer [17] with a learning rate of 0.001.
Training was conducted over 10 epochs, using mini-batches of size 256, and the
dataset was shuffled in each epoch to ensure robustness.



6 Zhai et al.

5 Results

To begin our results section, Figure 1 presents the phishing susceptibility predic-
tion heatmap for a single end user agent. In the original test dataset, this user’s
pre-training phishing susceptibility (PSBE) is 0.149561, and the post-training
value (PSAE) is 0.066252. Figure 1 illustrates how the trained neural network
model responds to variations in two dynamic human factors: fatigue and job
performance. Each grid cell in the heatmap represents the predicted phishing
susceptibility for a specific combination of fatigue and job performance. The
prediction values for this user range from 0.074821 to 0.151971, which is similar
to the empirical range of the user’s phishing susceptibility (PSBE to PSAE),
indicating that the model provides generally reasonable predictions. In addition,
the heatmap clearly shows that phishing susceptibility increases as fatigue in-
creases and job performance decreases. In particular, this result demonstrates
that, unlike the conventional method which relies on probabilistically switching
between PSBE and PSAE values based on fatigue and job performance [11], the
proposed model is able to continuously adjust the phishing susceptibility score in
response to changes in these dynamic human factors. In other words, our neural
network-based approach is significant in that it can flexibly respond to subtle
variations in dynamic human factors, providing more precise and interpretable
predictions of phishing susceptibility compared to previous methods.
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Fig. 1. Heatmap of predicted phishing susceptibility for a single end user agent.
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Table 1. Prediction Performance of the Surrogate Model

Dataset MSE MAE Pearson Correlation
Train  0.0002 0.0074 0.9976
Test 0.0021 0.0251 0.9862

Next, for all 235 end users in both the training and test sets, we generated
phishing susceptibility predictions using our surrogate model for every possible
combination of job performance and fatigue (441 in total). The model’s predic-
tion performance was evaluated by comparing the predicted phishing suscepti-
bility scores to the actual values, where the actual value for each combination
was computed as the mean of 100 simulation runs generated through data farm-
ing for each end user agent. Table 1 summarizes the prediction performance
of the proposed surrogate model. The results demonstrate that the MLP-based
surrogate accurately approximates the original simulation-based phishing sus-
ceptibility model, achieving a mean squared error (MSE) of 0.0002, a mean
absolute error (MAE) of 0.0074, and a Pearson correlation coefficient of 0.9976
on the training set. On the test set, the MSE and MAE were 0.0021 and 0.0251,
respectively, with a Pearson correlation of 0.9862. These results indicate that
the surrogate model maintains high predictive accuracy and generalizes well to
unseen data, as evidenced by the minimal drop in performance from the training
to the test set.

Table 2. Average calculation time (in seconds) and standard deviation for the original
simulation method versus the MLP-based surrogate method in varying number of V.

N Original Method |Surrogate Method

Avg Time|Std Dev|Avg Time|Std Dev
1 0.18 0.038 4.07 0.11
10 1.47 0.065 4.71 0.13
50 6.69 0.13 6.54 0.22
100 15.43 0.36 14.79 0.16
200 27.34 0.53 22.21 0.12
500 67.63 1.82 38.75 0.35
1000 | 135.04 2.90 72.91 1.27
10000| 1436.68 | 18.31 | 734.58 6.46

Lastly, we measured the computation time required to update phishing sus-
ceptibility for each end user agent at every tick (second) over a simulated day
(86,400 ticks) in the simulation environment. Two approaches were compared:
the original method, which computes phishing susceptibility through a series of
equations and conditional statements based on fatigue and job performance for
each agent, and our proposed MLP-based surrogate model, which instantly pre-
dicts phishing susceptibility using the trained neural network. All MLP-based
surrogate model predictions were executed on the CPU, and all experiments were
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conducted on a DELL computer equipped with an Intel Core Ultra 7 Processor
and 32 GB of RAM.

Table 2 summarizes the results of our experiments. For simulations involving
small and medium-sized organizations (N < 50), the original method achieved
faster computation times when calculating phishing susceptibility for all end
user agents. This is likely because, for small N, the surrogate method incurs a
fixed overhead for loading the neural network into memory, converting the input
data into tensors, and initializing the inference context, which outweighs any
gains from parallelized matrix operations. In contrast, the original method relies
solely on simple arithmetic and conditional checks, so it remains faster when the
number of agents is low. Starting from N = 50, however, the surrogate method
increasingly outperformed the original method in terms of computation time. As
N increased, the computational efficiency gap between the two methods widened,
and for N = 10, 000, the surrogate method was nearly twice as fast as the original
method. This demonstrates the superior scalability and computational advantage
of the MLP-based surrogate approach in large-scale simulation settings.

6 Discussion and Conclusion

In this study, we proposed a surrogate approach based on an MLP neural net-
work to significantly improve the computation speed of phishing susceptibility
calculations for human agents in cybersecurity simulations, while incurring only
minimal loss in accuracy. This method also enhances the overall scalability of
the simulation. Furthermore, our approach advances beyond previous methods
that determined phishing susceptibility by probabilistically switching between
PSBE and PSAE based on job performance and fatigue values. Instead, our
model continuously and responsively adjusts phishing susceptibility, producing
more realistic outputs as fatigue decreases and job performance increases.

The experimental results show that, although the surrogate model was slower
than the original method for small values of IV, a clear break-even point appeared
around N = 50, after which the surrogate method became increasingly faster.
Even with a relatively simple phishing susceptibility prediction model that con-
siders only two dynamic human factors, fatigue and job performance, the surro-
gate model achieved nearly a twofold increase in computation speed compared
to the original method for N = 10,000. This suggests that, when the surrogate
approach is applied to more sophisticated models incorporating a greater variety
of static and dynamic human factors and their complex interactions, even greater
improvements in scalability can be expected. Additionally, since our experiments
ran the surrogate model using only the CPU, further speed improvements are
likely when employing a GPU. These results highlight the potential of the sur-
rogate modeling approach to serve as a scalable, generalizable tool for a wide
range of human factor—driven simulation studies in cybersecurity.

For future research, we plan to incorporate additional dynamic human factors
that are likely to influence phishing susceptibility, such as stress level, social
media usage patterns, emotional state, and perceived vulnerability. Including
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these variables will allow the model to better capture the complexity of real-
world human behavior, though it may also increase the overall complexity of
the model. If the current neural network becomes insufficient to maintain high
predictive accuracy under these more complex conditions, we intend to explore
and compare more sophisticated neural network architectures to identify the
most suitable structure for real-time phishing susceptibility prediction and for
improving the scalability of cybersecurity simulations.

Finally, we plan to conduct further research using realistic cybersecurity sim-
ulation frameworks such as OSIRIS [20], which integrate diverse human factors
[11], organizational culture [3], social networks, and a range of system and hu-
man vulnerabilities [21]. Through these platforms, we aim to investigate how the
proposed surrogate approach can be effectively applied to simulation modules
beyond phishing susceptibility prediction, and how it can further improve the
computational speed and scalability of large-scale cybersecurity simulations.
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