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       Abstract 

Stress typically shifts human decision-making away from exploratory and to-
wards more routine, risk-averse patterns. In this study, we investigate whether 
tDCS applied to the DLPFC reverses the shift, inducing curiosity-driven explo-
ration and risk-taking under cognitive load. Participants performed a repeated 
decision-making task with risky, safe, and "reveal" (information-sampling) 
choices, under and without trivia-based cognitive load and tDCS. Behavioral 
outcomes indicate that tDCS greatly promoted risky and reveal decisions, im-
plying elevated exploratory behavior under stimulation. To mechanistically ac-
count for these effects, we contrasted three models: a Default Instance-Based 
Learning (IBL) model, an Optimized IBL model with parameter-tuned memory 
parameters, and a hybrid Prospect-Theoretic IBL (PT-IBL) model with nonlin-
ear valuation from Prospect Theory. Under tDCS, PT-IBL had the lowest mean-
squared deviation (MSD) in risky decisions and competitive performance in re-
veal sampling. Without stimulation, PT-IBL was a superior fit to risky choice 
behavior, and Optimized IBL was superior at modeling reveal behavior. Param-
eter estimates show that tDCS increased memory decay (d = 1.66) and retrieval 
noise (s = 4.72) in line with recent-memory dependence and retrieval noise—a 
computational marker of exploration. In contrast, without tDCS, PT-IBL exhib-
ited less decay (d = 0.12), in line with long-term memory trace dependence. PT 
parameters (α ≈ 0.86–0.97; β ≈ 0.66–0.88; λ ≈ 1.55–2.41) were in normative 
ranges. These results show that tDCS enables exploratory cognition by modu-
lating memory retrieval dynamics and subjective value weighting, and PT-IBL 
offers a psychologically grounded explanation of neuromodulated decision-
making. 
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1 Introduction 
 

Despite being essential components of adaptive decision-making, curiosity and risk-
taking both deteriorate under cognitive load because they increase dependence on ha-
bitual decisions and decrease working memory [1-2]. Such a cognitive shift may hinder 
performance in real-world domains like emergency response, aviation, education, and 
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healthcare—particularly when decision-makers are expected to evaluate novel or un-
certain alternatives [3]. 

According to recent studies, neuromodulation of the dorsolateral prefrontal cortex 
(DLPFC) by anodal transcranial direct current stimulation (tDCS) may improve exec-
utive control and cognitive flexibility [4-6]. Although tDCS has been linked to better 
exploratory decision-making, its interaction with cognitive load—and how it supports 
curiosity-driven behavior under such stress—remains less understood. 

This work is important because it offers an integrative cognitive framework that de-
scribes how neuromodulation can preserve curiosity and risk preferences in the face of 
cognitive stress. Previous research has either studied decision dynamics separately or 
looked at the brain regulation of risk-taking. Our contribution fills a critical modelling 
gap by bridging these perspectives through a unified computational approach. Our 
study is new because we have developed a hybrid Prospect-Theoretic Instance-Based 
Learning (PT-IBL) model that accounts for subjective valuation biases as well as 
memory retrieval dynamics. 

A mechanical explanation of decision-making based on the recall of prior experiences 
from memory is provided by instance-based learning theory (IBLT) [7-8]. Human de-
cision-making has been simulated in a variety of dynamic and unpredictable situations. 
However, IBLT's assumption of objective outcome encoding limits its ability to capture 
deviations from rationality observed in real-world decisions. 

On the other hand, Prospect Theory (PT) explains how people routinely manipulate 
their gains and losses according to criteria [9,10,11,12]. It does not have a temporal or 
experience-based mechanism, but it does reflect important psychological tendencies 
like loss aversion and diminishing sensitivity. By incorporating PT's value function into 
the IBL retrieval process, our hybrid model makes it possible to describe both dynamic 
memory effects and subjective reward encoding. 

Few research have looked at how tDCS and cognitive load interact to influence risk-
taking and exploration during repeated decisions, despite increased interest in under-
standing their effects independently [13]. Furthermore, the synergy between valuation 
(PT) and memory retrieval (IBL) is often overlooked by current cognitive models. To 
our knowledge, no prior study has combined PT and IBL mechanisms to jointly char-
acterize how curiosity and risk preferences shift under neuromodulation and cognitive 
load. 

By applying PT's nonlinear value function to every recovered memory instance inside 
the IBL architecture, we present a hybrid Prospect-Theoretic Instance-Based Learning 
(PT-IBL) model that fills this gap. This enables us to simulate the dynamics of memory-
driven choice as well as subjective valuation. We perform a within-subjects experiment 
in which participants, with or without anodal tDCS delivered over the right DLPFC, 
complete a repeated decision task with safe, risky, and "reveal" (exploratory) options 
under trivia-based cognitive load. 

Our main hypothesis is that tDCS restores exploratory activity even when cognitive 
load is present by increasing reward salience, which is manifested in an elevated choice 
utility parameter. Additionally, we anticipate that stress inhibits retrieval and acceler-
ates memory degradation (modelled as). Specifically, we predict that PT-IBL will best 
capture human choices by jointly accounting for subjective reward valuation and 
memory decay under different tDCS-load conditions. We compare the suggested PT-
IBL agent, an optimized IBL model, and a default IBL model to see which model best 
predicts risk-seeking and exploratory behavior in humans in each scenario. 
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In the following, we provide computational and empirical evidence that tDCS affects 
risky decision behavior and reveal behavior under cognitive strain. We assess how well 
these behavioral patterns are explained by the default IBL, optimized IBL, and the sug-
gested PT-IBL models. We show that PT-IBL offers a more complete account of be-
havior by capturing the dual role of subjective valuation and retrieval noise in shaping 
decisions. This approach aids in our comprehension of how neuromodulation and cog-
nitive processes combine to support risk-taking and exploration in stressful situations. 
 

 

2 Methodology 
 
2.1 Theoretical Framework 

We formalize three agents in successive subsections: first the standard memory‐based 

IBL model, then the standalone PT valuation, and finally their hybrid integration (PT-

IBL). 

Instance-Based Learning Architecture  

IBLT represents each past experience as an instance 𝑖 with outcome 𝑥𝑖. At decision 

time 𝑡, activation is given by [9]: 

                                    𝐴𝑖 = 𝑙𝑛(∑ (
𝑛𝑖
𝑗=1 𝑡 − 𝑡𝑖𝑗)−𝑑)  + 𝜀𝑖                                          (1) 

where 𝑑 is the decay rate, 𝑡𝑖,𝑝 indexes past occurrences, and 𝜀𝑖 ∼ ℕ(0,𝑠2) is retrieval 
noise. Retrieval probabilities follow a Luce rule: 

                                     𝑃𝑖,𝑡 =
𝑒𝑥𝑝(𝐴𝑖,𝑡)

∑ 𝑒𝑥𝑝(𝐴𝑗,𝑡)𝑗
                                                                  (2) 

The Blended Value for each action 𝑗 is 

         𝑉𝑗 = ∑ 𝑃𝑖,𝑡𝑥𝑖𝑖∈I𝑗
                                                                  (3) 

with 𝐼𝑗 the set of instances tied to action 𝑗. In IBLT, the model repeats its prior deci-
sion with an inertia probability (pinertia) [14] or decides based upon the blended values 

in equation 3. 

Prospect-Theoretic Valuation 

Prospect Theory’s value function transforms objective outcomes nonlinearly [12]: 

  𝑣(𝑥) = {
𝑥𝛼 ,             𝑖𝑓 𝑥 ≥ 0,

−𝜆(−𝑥)𝛽 ,   𝑖𝑓 𝑥 < 0
                                           (4) 

where 𝛼 and 𝛽 capture gain/loss sensitivity and 𝜆 captures loss aversion. Standalone PT 

predicts choice by comparing 𝑢(𝑥) across options. 

Prospect-Theoretic Instance-Based Learning (PT-IBL) PT-IBL embeds PT’s valu-

ation directly into the IBL blending process. Each instance’s outcome 𝑥𝑖 is first mapped 

through 𝑢(𝑥𝑖), and then blended via memory activations: 
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                  𝑉𝑗 = ∑ 𝑃𝑖𝑢(𝑥𝑖)𝑖∈I𝑗
                                                      (5) 

To capture load and tDCS‐induced shifts in memory dynamics, PT-IBL parameterizes:  

           𝑠 =  𝑠0 −  𝛿𝑠 • 𝑙𝑜𝑎𝑑                                                              (6) 

                    𝑑 =  𝑑0 + 𝛾𝑑 • (𝑡𝐷𝐶𝑆)                                                           (7) 

where load = 1 under trivia demand, tDCS = 1 under stimulation, 𝛿𝑠 quantifies load‐

driven increases in retrieval noise, and 𝛾𝑑 quantifies sham‐driven increases in memory 

decay. Under constant load, 𝑠 = 𝑠0+𝛿𝑠 always, while 𝑑 toggles between 𝑑0 (tDCS) and 

𝑑0 + 𝛾𝑑 (sham). This unified architecture allows us to test how subjective valuation (PT) 
and memory retrieval (IBL) interact and are modulated by neuromodulation and cogni-

tive load. 

2.2 Experimental Design 

This study employed a mixed factorial design with a between‐subjects factor of tDCS 

(anodal vs. sham) and a within‐subjects factor of cognitive load (low vs. High difficulty 

trivia) [15]. Thirty healthy volunteers (19 M, 11 F; mean age = 25.66 yrs, SD = 2.84) 

were randomly assigned to either the tDCS + Trivia group (n = 15) or the No-tDCS + 

Trivia group (n = 15). 

    The stimuli used in this study were specifically created to examine the effects of 

transcranial direct current stimulation (tDCS) and cognitive load on curiosity, decision-

making, and the trade-off between exploration and exploitation. A binary- choice deci-

sion-making task and cognitive load tasks in the form of trivia questions were used as 

stimuli to accomplish this (see Figure ‘1’). These components were carefully designed 

to produce different degrees of cognitive load while maintaining experimental control, 

resulting in an environment that closely mimics real-world decision-making situations. 

Participants in the binary-choice task had to make choices in 50 trials, each of which 

included three different possibilities. A lesser but assured reward was provided by Op-

tion A (Safe Option), where participants received 2.5–3.5 points. This choice was in-

tended to represent exploitation behavior, in which participants took advantage of a 

low- variability, predictable result. A probabilistic reward was added with Option B 

(Risky Option), giving players the possibility to receive 0 points or earn 16–18 points 

with a 20% likelihood (jittered between 18% and 22%).  

    Cognitive load was manipulated trial-by-trial via trivia questions preceding each 

choice. Low‐load items required simple factual recall; high‐load items required multi-

step reasoning or assertion evaluation. Trivia questions were randomized across trials 

to simulate varying mental effort. 
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Data Collection  

We recruited 30 healthy adult volunteers with no history of neurological or psychiatric 

disorders. All participants provided informed consent, and the study received ethical 

approval from the Institutional Ethics Committee at the Indian Institute of Technology 

Mandi (IIT Mandi). Participants received a briefing before the experiment explaining 

the purpose of the study, which was to examine curiosity and decision-making under 

various cognitive loads, as well as their right to discontinue participation at any time. 

The study was carried out in the Applied Cognitive Science Laboratory, IKSMHA Cen-

tre, IIT Mandi, in a sound-attenuated, distraction-free environment. Performance-based 

financial incentives were given to participants as a thank you. 

    Upon arrival, participants underwent consent procedures and received a task brief-

ing. Impedance checks were conducted to ensure safety and reliable current delivery. 

A quick pretest made sure that participants understood the contents and format of the 

assignment by acquainting them with the trivia questions used to manipulate cognitive 

load. There were two stages to the experimental session. Before each decision-making 

experiment in the first phase, trivia questions were used to modify cognitive load. In 

order to guarantee that the manipulation remained unaffected by incentives, responses 

were recorded but not linked to financial rewards. In the second stage, participants had 

to make judgments based on 50 randomized trials in a binary- choice problem. They 

had to choose between three options: choice A, which was safe and guaranteed to have 

a low reward; Option B, which was risky and had probabilistic big rewards or zero 

points; and Option R (see Figure 1), which was exploratory and allowed for more in-

formation about the probabilities involved in the risky choice. Participants in the tDCS 

+ Trivia group received anodal stimulation targeting the left frontal and frontopolar 

area, with the reference electrode placed over the contralateral supraorbital area, using 

the Neuroelectrics Starstim 32 [16]. Stimulation was applied concurrently during the 

full experimental task, which included both the trivia-based cognitive load phase and 

the subsequent 50-trial decision-making task. Stimulation included a ramp-up time of 

30 seconds and a ramp-down time of 45 seconds and was aimed at enhancing cognitive 
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flexibility during the stimulation. To maintain uniformity in the experimental Condi-

tions between groups, participants in the control group experienced the identical setup 

and procedures but were not actively stimulated.  

 

2.3 Computational Modeling 

All agents were implemented in Python using the PyIBL framework. We compared 

three models: 

Default IBL Uses standard ACT-R settings (decay d0 = 0.5, noise s0 = 0.45), 

Optimized IBL Fits the five IBL parameters (d0, s0, δs, γd, pinertia) and utility parameters 

to each condition’s data. 

PT-IBL In addition to the eight IBL parameters, fits Prospect Theory parameters (α, β, 

λ) for nonlinear gain/loss valuation. 

    Model Fitting Procedure for each stimulation condition (tDCS vs. sham), we pooled 

all 50 trials per participant and ran SciPy’s differential_evolution optimizer [17] on a 

population of 40 candidate parameter sets for 40 generations, minimizing the mean-

squared deviation (MSD) between simulated and empirical risky-choice rates (R-rate) 

on the training split. 

At each generation the objective is computed as: 

          𝑀𝑆𝐷 =  
1

𝑁
∑ (𝑅̂𝑝 − 𝑅𝑝)2𝑁

𝑝=1                                                                 (8) 

where 𝑅̂𝑝 and 𝑅𝑝 are the simulated and human R-rates for participant p. 

   The best-fitting parameter vector from generation 40 was then used to simulate all 

trials—including held-out test data—for final model comparisons. 

    This genetic-algorithm approach (40 agents over 40 generations) ensures thorough 

exploration of the high-dimensional parameter space, balancing exploration and exploi-

tation in calibration, and provides robust, reproducible fits across participants and con-

ditions. 
  

3 Results  
Under sham condition (tDCS = 0), the subjects exhibited low exploration behavior, as 
indicated by an R-rate of 0.3026 and a reveal rate of 0.2146. Under anodal tDCS (tDCS 
= 1), significantly greater behaviors were exhibited: the R-rate was raised to 0.5613 
(85% increase) and the reveal rate to 0.3613 (68% increase). The findings indicate that 
prefrontal neuromodulation enhances risk-taking and exploration due to curiosity even 
under cognitive load. 

Table 1 summarizes human decision rates and simulated output and mean squared 
deviations (MSDs) for all models. Default IBL model with ACT-R default parameters 
(d₀ = 0.5, s₀ = 0.45, pinertia = 0.0) underpredicted R-rate and reveal behavior invariably 
when stimulated and when sham, with enormous MSDs (e.g., 0.293 and 0.201 under 
tDCS). 
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Table 1. Human vs. Model Risky-Choice and Reveal-Sampling with Mean-Squared 
Deviations under Anodal tDCS and Sham Conditions 

Condition  Model  Parameters  
Model 
Risky  

Model 
Safe  

Model 
Reveal  

Human 
Risky  

Human 
Safe  

Human 
Reveal  

MSD 
Risky  

MSD 
Reveal  

tDCS, 

trivia  

Default 

IBL  

d₀=0.5,       

s₀=0.45  pi-

nertia=0.0 

  

0.081  0.584  0.335  0.561  0.077  0.361  0.293  0.201  

tDCS, 

trivia  

Opti-

mized 

IBL  

d₀=0.995, 

 s₀=3.72, 

δₛ=0.8923, 

γd=0.2762, 

pinertia=0.3  

0.624  0.000  0.376  0.561  0.077  0.361  0.020  0.019  

tDCS , 

trivia  
PT-IBL  

  

d₀=1.10,    

 s₀=4.72,  

δₛ=0.44,   

γd=0.56, 

pinertia=0.0,  

α= 0.972, 

 β= 0.660,   

λ= 2.409  

  

0.612  0.072  0.316  0.561  0.077  0.361  0.015  0.037  

No tDCS, 

trivia  

Default 

IBL  

d₀=0.5,    

s₀=0.45  

pinertia=0.0  

  

0.098  0.403  0.498  0.303  0.483  0.215  0.099  0.295  

No tDCS, 

trivia  

Opti-

mized 

IBL  

d₀=0.6726, 

s₀=0.6025, 

δₛ=0.5461, 

pinertia=0.3 

0.227 0.528 0.245 0.303 0.483 0.215  0.001 0.009 

No tDCS, 

trivia  
PT-IBL  

d₀=0.1238, 

s₀=4.2883, 

δₛ=0.3368,  

 pinertia=0., 

 α=0.8593, 

β=0.8766 

λ=1.5482 

0.320 0.312 0.368 0.303 0.483 0.215  0.007 0.033 

 

The Optimized IBL model, whose memory parameters were computed, modeled hu-
man behavior well. Upon tDCS-stimulation, its modeled R-rate (0.6240) and reveal rate 
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(0.3760) were very similar to observed ones (0.5613 and 0.3613) with minimal MSDs 
(0.020, 0.019). Its γd parameter (0.2762) only affected behavior when stimulated, 
demonstrating that neuromodulation affects decay-based retrieval modulation. The PT-
IBL model that incorporated Prospect Theory's value transformation nonlinearity and 
IBL's memory structure also yielded similar good fits. Under tDCS, the model R-rate 
(0.6120) and reveal rate (0.3160) approximated human behavior closely, with very low 
MSD for risky decisions (0.015). Its fitted reward-sensitivity parameters—α = 0.972, β 
= 0.660, and λ = 2.409—emphasized elevated subjective value weighting under stimu-
lation. Under sham condition, PT-IBL also captured R-rate better than Optimized IBL 
(MSD = 0.0074 vs. 0.0099) and had a higher reveal rate MSD (0.0331 vs. 0.0086), 
which is a compromise. Interestingly, without applying tDCS, PT-IBL exhibited low 
decay (d₀ = 0.1238), high noise (s₀ = 4.2883), and high sensitivity (α = 0.8593, β = 
0.8766), which would suggest deeper use of memory but greater variability in decision 
consistency. 

Collectively, these results show that tDCS increases exploration and risk-taking and 

that PT-IBL models these effects by simulating both memory and subjective value. In 

addition, modulation of memory decay (γd) is functionally significant only after stimu-

lation application. 
  

4 Discussion and Conclusions 

 

The effect of transcranial direct current stimulation (tDCS) on decision-making under 

cognitive load was investigated in this study with a focus on risk-taking and curiosity-

driven exploration. We sought to test the impact of neuromodulation on subjective val-

uation and memory retrieval dynamics in risky and cognitively demanding contexts by 

providing anodal tDCS to the right dorsolateral prefrontal cortex (DLPFC). The behav-

ioral statistics indicate tDCS produced a significant increase in the frequency of use of 

the reveal option and risky choice. Stimulation subjects produced a 68% increase in 

reveal rate and an 85% increase in risky-choice rate relative to sham. This is in line with 

previous work that connects prefrontal activation with increased cognitive control and 

reduced choice inertia [4,5] and implies anodal tDCS to the DLPFC facilitates cognitive 

flexibility and adaptive exploratory action. The behavioral effects were accounted for 

mechanistically by the computer modeling. 

In both states, the Default IBL model consistently underestimated exploration with 

ACT-R base parameters. Optimized IBL, however, reached nearly human alignment by 

adding tDCS-related decay modulation (γd), load-dependent noise modulation (δₛ), re-

trieval noise (s₀), fitted decay rate (d₀), and decision inertia (pinertia). Adding the Prospect 

Theory features of gain sensitivity (α), loss sensitivity (β), and loss aversion (λ) resulted 

in the PT-IBL model that surpassed this. The PT-IBL model was capable of modeling 

sophisticated behavior by adding subjective value—especially under tDCS, where ex-

ploration and reward salience were increased. 

This model was based on the decay parameter modulated by γd, which accounts for 

how tDCS speeds up memory decay, thus enhancing dependence on recent experience. 

Instead of making it easier to recall long-term memory, this mechanism proposes that 

tDCS evokes a short-term, feedback-sensitive mode of decision. Similarly, the retrieval 

noise parameter s₀, modulated by δₛ, scales up with load and stimulation, accounting 
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for choice behavior variability and malleability. These modulations account for how 

neuromodulation enhances exploratory variability, even for cognitively loaded condi-

tions. Interestingly, γd had minimal functional impact in no-stimulation conditions, 

highlighting its specific significance under conditions of neuromodulation. 

These results are in line with dual-process models of decision-making, in which 

memory retrieval (System 1) and valuation (System 2) dynamically interact [10,18]. 

PT-IBL unifies both by integrating memory-based sampling (IBL) with nonlinear val-

uation (PT) to yield a computationally grounded account of exploratory cognition under 

neuromodulation. 

This is consistent with previous research that tested IBL models on tasks [7,8,14] and 

demonstrates how these models can be made adaptable by incorporating psychological 

constructs. Most importantly, being able to replicate risky and reveal behavior under 

tDCS demonstrates the activation of executive regions like the DLPFC in regulating 

retrieval processes and subjective value. [6] cite that such a result is consistent with 

brain research that indicates that tDCS is able to entrain oscillatory patterns in memory 

regions to enable task-relevant recall and episodic accessibility. 

PT-IBL's ability to model at the grain of behavior, such as retrieval quality change 

and decision strategy, offers an exciting platform for studying the impact of neuromod-

ulatory interventions on cognitive processes. The present research has two implications. 

At the theoretical level, it enhances our comprehension of how neuromodulation alters 

the interaction between valuation and retrieval, and it offers a cognitive model that gen-

erates predictions about behavior as well as accounts for it. The results have practical 

implications for high-stakes or cognitively demanding contexts, such as emergency re-

sponse, military strategy, or clinical diagnosis, where selective brain stimulation can 

trigger curiosity and adaptive decision-making. Subsequent studies should look at how 

differences in control or valuation bias between individuals influence tDCS response 

and whether or not these influence generalize to tasks involving social uncertainty, de-

layed outcome, or dynamic feedback. Application of brain measures such as fMRI or 

EEG would offer convergent data on how stimulation impacts cognitive dynamics and 

further illuminate the putative mechanisms. This experiment concludes by showing 

how tDCS influences reward valuation and memory decay to facilitate exploration and 

risk-taking under cognitive load. In both cognitive modeling and applied neuroscience, 

the PT-IBL model provides a theoretically derived and empirically validated tool to 

account for the cognitive impact of neuromodulation. 
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