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Abstract. In modern conflict zones, information warfare unfolds along-
side physical violence, with digital platforms becoming key battlegrounds
for influence. This study investigates how competing narratives, pro-
Kremlin and pro-Ukrainian, diffuse through Telegram during the Rus-
sia–Ukraine war. Unlike mainstream platforms, Telegram offers minimal
moderation and asymmetrical broadcasting, enabling state and non-state
actors to rapidly propagate their perspectives. We apply a stance based
epidemiological model, SEIAIDZ, to capture the spread and competi-
tion of opposing stances within a large-scale Telegram dataset. Our model
distinguishes between users who adopt or reject each narrative. Through
parameter estimation and diffusion analysis, we quantify the narrative
reproduction potential (R0) and highlight key parameters affecting the
transmission dynamics.
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1 Introduction

The Russia–Ukraine war is unfolding not only on the battlefield but also across
digital spaces, with Telegram emerging as a central platform for information
warfare. Unlike more regulated social media platforms, Telegram’s lack of ro-
bust content moderation and its broadcast-style channel structure make it an
ideal venue for rapid, large-scale dissemination of both propaganda and counter-
narratives [10]. This architecture allows state and non-state actors to shape pub-
lic perception in near real-time, often without institutional constraints [11]. One
prominent tactic leveraged in this space is the “firehose of falsehood,” a strat-
egy characterized by high-volume, multi-channel, rapid, and often contradictory
messaging that has been frequently attributed to Russian influence operations
since 2014 [14,13]. These campaigns are not just about spreading specific disin-
formation but about undermining trust, amplifying uncertainty, and polarizing
public opinion [17,16]. With Telegram’s open channels serving both state-aligned
and oppositional voices, the Russia–Ukraine conflict presents an ideal testbed
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for understanding how narratives diffuse, collide, and compete in online social
networks. Traditional models of online information diffusion such as SIR, SEIR,
or cascade models often treat misinformation as a single transmissible entity.
However, this assumption breaks down in polarized environments where mul-
tiple narratives are simultaneously competing for attention. To address this,
we apply a stance-based epidemiological model (SEIAIDZ, which segments in-
fected users into those who agree with a narrative (pro-Kremlin) and those who
oppose it (pro-Ukraine)), while also modeling skeptical behaviors. Our study
uses a curated dataset of Telegram messages from Russian-language political
channels with high follower counts. These channels span both pro-Kremlin and
pro-Ukrainian perspectives, enabling us to analyze the temporal and structural
dynamics of narrative diffusion. By fitting the SEIAIDZ model to this dataset,
we explore the effects of transmission rate, stance transition rate, and platform
affordances on the basic reproduction number (R0) of each narrative stance.

RQ1: Can segmenting the infected compartment into competing narrative
types enhance the precision of narrative dissemination modeling?

RQ2: What are the key factors driving the basic reproduction number (R0)
in the propagation of narratives on social media?

RQ3: How does the transmission rate (β) influence the spread and amplifi-
cation of narratives on social media?

2 Literature Review

Social media is a key arena for the spread of diverse content, including news,
rumors, misinformation, and competing narratives. However, many studies have
relied on superficial metadata (e.g., hashtags, titles) and often examine a single
viewpoint, limiting our understanding of complex narrative interactions on these
platforms. Mathematical models such as ODEs [3], PDEs [15,4], and SDEs [6,12]
as well as knowledge graphs [1] have been widely applied to study information
diffusion, viral content, containment strategies, and network-based interventions.
Epidemiological models are particularly useful for modeling narrative spread [5].
For instance, the SIR model captures transitions from susceptibility to dissemi-
nation and resistance [18]. Recent advances also have focused on identifying dif-
fusion sources and controlling spread. Percolation-based methods enhance source
detection and monitoring using minimal observers [8,9], while strategic edge re-
moval helps hinder propagation [7]. Despite such progress, prior models often
neglect competing narratives, especially in semi-open spaces like Telegram where
both state and grassroots voices operate. This is crucial in geopolitical conflicts
like the Russia–Ukraine war, where narrative control shapes perception. We ad-
dress this gap by applying a stance-aware epidemiological model (SEIAIDZ) to
model pro-Kremlin vs. pro-Ukrainian narrative diffusion on Telegram. By cap-
turing user stance transitions to agreement and disagreement, our model offers
a more nuanced view of narrative competition.
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3 Methodology

This section outlines the methodological framework we employed to model the
diffusion of competing narratives during the Russia–Ukraine conflict.

3.1 Data Collection

To study narrative diffusion during the Russia–Ukraine war, we collected Tele-
gram messages from high-impact Russian-language political channels, identi-
fied via TGStat. We selected channels with over 10,000 subscribers to ensure
relevance and influence. A team of native Russian-speaking annotators catego-
rized channels into four groups: Pro-Kremlin (aligned with Kremlin messaging),
Anti-Kremlin (critical of the Kremlin), Neutral (non-partisan), and Other (non-
political). To validate these labels, non-native annotators cross-checked classifi-
cations using Telegram’s translation tool, and political science experts assessed
a random sample. Annotation reliability was high, with Cohen’s kappa scores
of κ = 0.97 (native vs. non-native), κ = 0.87, and κ = 0.89 (expert com-
parisons). From this annotated dataset, we extracted messages from the top
five Pro-Kremlin and Pro-Ukraine channels over a 120-day period. The final
dataset included the following: 1,120,665 Pro-Kremlin messages (Agree stance)
and 3,631,980 Pro-Ukraine messages (Disagree stance). Full details about this
data are available in [2].

3.2 SEIAIDZ

On social media, users operate in a dynamic environment where they follow,
share, and spread narratives. While considering the SEIZ model, initially, users
are susceptible—unaware of a narrative but vulnerable to exposure via active
spreaders (infected) or disengaged former sharers (skeptics). New users join con-
tinuously (i.e., are recruited), while others leave over time (i.e., autonomously
exit). Exposure occurs when susceptible users encounter narrative content, typ-
ically through social connections or algorithmic promotion. Once exposed, users
evaluate the narrative. Some adopt and share it (becoming infected), while oth-
ers reject or ignore it (becoming skeptics), with transitions governed by narrative
persuasiveness and decision rates. Infected users may lose interest or shift views,
transitioning into skeptics at a decay rate. Skeptics, however, can re-engage if re-
exposed, reflecting the cyclical nature of attention on platforms. These dynamics
form the basis of the SEIZ model, capturing how users move between states of
susceptibility, exposure, infection, and skepticism. In this study we enhance the
classical SEIZ model by splitting the infected compartment I(t) into two: IA(t)
for users supporting a narrative and ID(t) for those opposing it. This distinc-
tion allows for a more realistic representation of narrative competition on social
media. The original interaction term β(I + Z) becomes β(IA + ID + Z), shown
in Equation (3), reflecting both agreement- and disagreement-based influence.
Exposure now leads to either IA or ID, based on user stance and governed by
parameters m, p, and δD. Specifically, mψ denotes the rate at which exposed
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users become promoters (IA), pϕ represents the rate of transition to the dis-
senting group (ID), and δD and δA capture shifts between stances. Equation (3)
also introduces γA, γD, νA, and νD to model disengagement due to fatigue or
moderation, adding realism to the model. In summary, the extended SEIAIDZ
model (1) separates agreeing from disagreeing users, (2) models stance shifts be-
tween narratives, and (3) includes dropout from fatigue or policy actions. This
richer structure better reflects user behavior and narrative dynamics in polarized
digital environments. The full model is defined as

dS(t)
dt = Π − β

(
IA + ID + Z

)
S(t)− µS(t),

dE(t)
dt = β

(
IA + ID + Z

)
S(t)− (1−m)ψE(t)− (1− p)ψE(t)− (1− q)ψE(t)− µE(t),

dIA(t)
dt = mψE(t) + δDID(t)− (δA + µ+ γA)IA(t) + υAZ(t),

dID(t)
dt = pϕE(t) + δAIA(t)− (δD + γD + µ)ID(t) + υDZ(t),

dZ(t)
dt = qψE(t) + γAIA(t) + γDID(t)− (υA + υD + µ)Z(t).

(1)
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Fig. 1: Transfer diagram of the SEIAIDZ model.
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Table 1: Interpretation of parameters in the model
Parameter Interpretation
Π Recruitment rate
µ Autonomous exit
β Infection rate
ψ Rate at which exposed individuals transition to the Agreed and Skeptic com-

partments.
δA The rate at which Agreed revert to Debunk
δD The rate at which Debunk revert to Agreed
m The proportion of exposed users who transition to the Agreed Infected com-

partment.
ϕ Rate at which exposed individuals transition to the Debunk compartment.
p The proportion of exposed users who transition to the Debunkers compart-

ment, representing those who actively oppose or challenge the narrative.
q Proportion of exposed users who become Skeptics
γA, γD The rate at which Agreed and Debunk revert to Skeptics, respectively
υA, υD The rate at which Skeptics revert to Agreed and Debunk, respectively

3.3 Model Fitting and Parameter Estimation

To estimate the parameters of the model equations, we employed the Non-Linear
Least Squares Method (NLSM). This method is particularly well-suited for com-
plex systems where the relationships between parameters and observed outcomes
are inherently non-linear. The primary objective of NLSM is to minimize the sum
of squared differences between the model’s predictions and the observed data,
thereby ensuring a high degree of accuracy and reliability in the estimated pa-
rameters. Initial guesses for the model parameters were made based on prior
literature and exploratory data analysis. This approach ensured that the NLSM
algorithm began with values within a plausible range, increasing the likelihood
of convergence to optimal solutions. The objective function for the Non-Linear
Least Squares Method (NLSM) is defined as

J =

n∑
i=1

(yi − f(xi; θ))
2

where yi represents the observed data points, f(xi; θ) denotes the model pre-
dictions based on the parameter vector θ, xi are the independent variables,
and n is the total number of observations. Now, we present the model fitting
and parameter estimates for the discussions surrounding the Pro-Russian and
Pro-Ukrainian Narrative. Specifically, Fig. 2a illustrates the parameter fitting
for users who posted pro-Russian narratives. In contrast, Fig. 2b presents the
model fitting for users who posted pro-Ukrainian narratives. Finally, Fig. 2c and
Fig. 2d provide a comparison of the behavior of users holding both perspectives,
with the SEIZ model applied to one group and the SEIAIDZ model applied
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to the other, respectively. The final parameter values for the stance-based epi-
demiological model applied to the dataset are detailed in Table 2.
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Fig. 2: Model fitting for Telegram data on pro-Russian and pro-Ukrainian nar-
ratives.

Table 2: Estimated parameter values based on Ukraine / Russia war narrative on
Telegram dataset.

Parameter SEIZ SEIAZ SEIDZ SEIAIDZ

Π 100 100 100 100
β 0.11 0.018 0.0046 0.0019
µ 0.0233 0.0021 0.0034 0.0197
ψ 0.47 0.01 0.04 0.001
δA 0.21 0.08
δD 0.02 0.016
m 0.4 0.09
p 0.001 0.02 0.09
q 0.04 0.008 0.0056 0.04
γA, γD 0.01, 0.023 0.001, 0.023 0.01, 0.06
υA, υD 0.01, 0.023 0.1, 0.02 0.03, 0.005

4 Results and Analysis: Russia–Ukraine Case Study

To examine the dissemination of competing narratives during the Russia–Ukraine
war, we utilized Telegram data capturing pro-Russian and pro-Ukrainian mes-
saging activity. Our stance-based epidemiological model, SEIAIDZ, was fitted
to this dataset and evaluated against the baseline SEIZ model. Table 3 shows
that for Telegram, the SEIAIDZ model achieves the lowest error rate (0.050), in-
dicating superior fit compared to alternative formulations. This directly answers
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Table 3: Error rates across models and platforms, demonstrating that the
SEIAIDZ model outperforms others with the lowest error rate.

Platforms SEIZ SEIAZ SEIDZ SEIAIDZ

Telegram 0.1071 0.201 0.1177 0.050

RQ.1 for the Telegram data: distinguishing between narrative stances improves
the fidelity of information diffusion modeling in conflict zones.

The basic reproduction number R0 for the SEIAIDZ model was computed
using the next-generation matrix approach. Fig. 3 illustrates that both transmis-
sion rate (β) and decision rate (ψ) significantly impact R0 for Telegram data.
Higher β increases narrative virality, while lower ψ prolongs user indecision, thus
amplifying spread, answering RQ.2.

Fig. 3: Effect of R0 with respect to β
and ψ for Ukraine/Russia war narra-
tives on Telegram.
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Fig. 4: Sensitivity of R0 under
Ukraine–Russia war narrative Tele-
gram dataset.

Fig. 4 presents the sensitivity analysis specific to Telegram. The transmis-
sion rate β shows the strongest positive correlation with R0, while user exit
rate µ exhibits a strong negative correlation. This supports RQ.3, reinforcing
that content virality and platform disengagement are pivotal levers in narrative
dynamics. To deepen our understanding, we conducted numerical simulations of
the Telegram case. We also conducted a sensitivity analysis of the key parame-
ters influencing narrative spread. Figs. 5 and 6 demonstrate that higher values
of the transmission rate (β) accelerate the transition from susceptible to exposed
and infected states. In contrast, lower values of the stance transition rate (ψ)
slow down users’ adoption of a stance. Interestingly, the skeptical population (Z)
grows under both high β and low ψ, highlighting how increased exposure and de-
layed decision-making contribute to uncertainty and disengagement in polarized
environments.
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(a) S(t) (b) E(t) (c) IA(t)

(d) ID(t) (e) Z(t)

Fig. 5: Effect of varying the transmission rate β on the SEI_AI_DZ model
using Telegram data.

(a) S(t) (b) E(t) (c) IA(t)

(d) ID(t) (e) Z(t)

Fig. 6: Effect of varying the stance-transition rate ψ on the SEI_AI_DZ model
using Telegram data.

5 Conclusion and Future Work

This study applied a stance-based epidemiological model (SEIAIDZ) to analyze
the spread of competing narratives related to the Russia–Ukraine war on Tele-
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gram. By differentiating users into agreeing, disagreeing, and skeptical compart-
ments, the model provided a nuanced view of how pro-Russian and pro-Ukrainian
narratives propagate and compete. The results showed that the SEIAIDZ model
significantly outperformed traditional models (i.e., SEIZ), offering a better fit
to Telegram data (see Table 3). Sensitivity analysis (Fig. 4b) and reproduction
number simulations (Fig. 3b) further identified the transmission rate (β) and
transition rate (ψ) as key drivers of narrative amplification. Numerical simu-
lations (Figs. 5 and 6) confirmed that higher β and slower ψ values acceler-
ate and prolong narrative exposure, with skeptics (Z) emerging in later phases
due to prolonged engagement. However, limitations remain. The model simpli-
fies user stance as mutually exclusive (agree/disagree/skeptic), which may not
capture users holding ambivalent or evolving positions. Future research could
enhance this framework by incorporating mixed stances, the influence of exter-
nal geopolitical events, or user-level psychological traits. Additional longitudinal
data could also support dynamic adaptation of parameters. In sum, this work
demonstrates that epidemiological modeling—when adapted to digital stance dy-
namics—can effectively trace the lifecycle of narratives in conflict zones. These
insights offer both theoretical contributions and practical tools for policymakers
and platforms aiming to manage information warfare in hybrid media environ-
ments.
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