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Abstract. Road accidents remain a major concern throughout the world,
often caused by driver fatigue, distraction, and aggressive behavior. Ex-
isting vehicle safety systems focus on measures such as emergency brak-
ing and lane departure warnings but lack anticipate accidents before
they occur. This research proposes a real-time accident risk prediction
framework that integrates driver monitoring with external scene analy-
sis. Our system includes driver behavior recognition, object detection,
stereo vision-based depth estimation, and speed tracking using deep
learning techniques to assess both internal and external risk factors. A fi-
nal module computes a dynamic risk score and triggers early alerts when
thresholds are exceeded. Additionally, the system generates a report to
support emergency response and post-incident analysis. This research
presents a novel integration of driver monitoring and road environment
analysis, resulting in a more robust and proactive vehicle safety system.
Check our website for more details: https://sites.google.com/view/real-
time-accident-prediction/.
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1 Introduction

Road accidents remain one of the leading causes of injury and death worldwide,
accounting for over 1.3 million fatalities each year, according to the World Health
Organization [20]. Traditional Advanced Driver Assistance Systems (ADAS)
such as lane keeping, adaptive cruise control, emergency braking, and antilock
braking system have significantly improved road safety. However, these systems
are limited by their design as they activate only after a potentially dangerous
event. For example, automatic braking may activate only moments before im-
pact, providing little time for accident prevention.

One of the limitation of many existing systems is the lack of integration
with human factors. Studies have shown that driver distraction, drowsiness, and
aggressive or inattentive behavior are major contributors to traffic accidents [6,9].
However, most ADAS frameworks rely mostly on external factors. These systems
also struggle with dynamic road conditions, including poor weather, changing
traffic density and unpredictable behaviour of nearby vehicles.
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These challenges highlight the need for a proactive intelligent safety system
that combines road situations with driver behavior analysis to assess and predict
risk in real-time before an accident happen.

To address this gap, we present Be Safe on the Road a deep learning frame-
work for real-time accident risk prediction. Our system integrates data from
stereo vision, driver activity recognition, speed estimation, and depth inference
to assess dynamic accident risk. The main contributions of our approach are:

— Robust depth and motion estimation. We use stereo cameras and SGBM
disparity maps to estimate object depth, refined through bounding box crop-
ping. Object motion is estimated by tracking bounding box centroids across
frames and converting pixel displacement to real-world speed.

— We add a human factor into the risk assessment pipeline by integrating a
CNN-based classifier that classifies driver behavior based on the in-cabin
video stream (e.g., texting, drinking, talking).

— We introduce an LSTM-based module that is based on the spatial (depth),
temporal (speed), and behavioral (driver state) modules to compute a risk
score. If the predicted risk score exceeds the threshold, the system generates
a report with the vehicle’s location and details about the potential accident,
which is sent to both the driver and external systems.

Our work contributes towards building an intelligent copilot system, that im-
proves driver awareness, reducing human error, and smarter safer transportation
systems.

2 Related Work

Accident risk prediction has received attention in recent years, with research
exploring vision-based speed estimation, driver behavior modeling, and temporal
risk forecasting. Traditional ADAS systems often rely on external sensors such
as RADAR or LIDAR; however, recent work uses monocular and stereo vision
for more accessible, cost-efficient alternatives.

Vision-Based Speed and Risk Estimation. Camera-based methods es-
timate vehicle speed using frame-to-frame displacement and calibrated optics
[4,12]. Optical flow and object tracking algorithms (e.g., KLT, SORT) have
been applied in monocular settings [19], while stereo vision enables accurate
depth perception for 3D reconstruction and motion estimation [13]. Temporal
models such as LSTM, ConvLSTM, and attention-based networks improve ac-
cident prediction by learning from sequential traffic data [2,10,16].

Driver Behavior and Risk Modeling. Research has shown that integrat-
ing driver behavior into predictive models significantly improves accident risk
forecasting. CNN and LSTM models have been used to classify in-cabin driver
behaviors [5], while probabilistic and attention-based approaches integrate envi-
ronmental and behavioral features to predict potential risks earlier [7].

Depth Estimation and Multi-View Perception. Stereo disparity meth-
ods (e.g., SGBM) and monocular depth estimation with CNNs have shown reli-
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able performance in real-time setup [8,11]. Efficient stereo pipelines for embedded
deployment are being actively explored in different research papers [18].

System-Level Integrations. Recent frameworks combine YOLO-based de-
tection with IoT and blockchain for secure, real-time traffic monitoring [3,17].
Other pipelines use license plate tracking or in-vehicle detection for accurate
speed and event estimation [1,3]. Frameworks like SAARTHI automate emer-
gency response using visual inspection and geolocation [15], while stereo-based
ADAS still face limitations in long-range fusion performance [12].

3 Proposed Framework

We present Be Safe on the Road, an end-to-end deep learning framework for
real-time accident risk prediction. Our system combines object detection, stereo
depth estimation, speed estimation, driver behavior classification, and temporal
accident risk prediction to assess accident risk in complex traffic environments.
As shown in Fig. 1, the pipeline includes four core modules. Each module is
described in details below.
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Fig.1: Architecture of the proposed accident risk prediction framework. The
pipeline includes: (1) data acquisition and preprocessing, (2) stereo vision for
depth and speed estimation using centroid tracking, (3) CNN-based driver be-
havior classification, (4) LSTM-based accident risk scoring and report generator.
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3.1 Data Acquisition and Preprocessing

We use two publicly available datasets: DrivingStereo for road scene analysis, and
the State Farm Distracted Driver Detection dataset for behavior classification.

— DrivingStereo: Contains 170,000 stereo image pairs from synchronized left /right
cameras. We use a subset of 2,000 pairs for depth/speed estimation.

— State Farm Dataset: Includes 22,424 labeled in-cabin images with 10 classes
(e.g., safe driving, texting, drinking).

All images are resized to 64 x 64 for efficiency. Stereo images are normalized
and converted to grayscale for disparity calculation. We apply data augmentation
(rotation, flipping, shifting) for driver images to improve generalization.

3.2 Depth and Speed Estimation

Depth Estimation We use stereo vision and YOLOvVS for detecting objects
and estimating depth via the Semi-Global Block Matching (SGBM) algorithm.
Detected bounding boxes from the left stereo frame are used to extract regions for
disparity computation. The object-level depth is computed as Z(u,v) = d(BT',’;),
where f is the focal length (in pixels), B is the baseline between cameras, and
d(u,v) is the disparity at pixel coordinates (u,v).

The complete depth estimation methodology is illustrated in Fig. 2.
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Fig. 2: Stereo images are used to calculate disparity, with detected objects (using
YOLOVS8) and their distance is estimated using Stereo SGBM - Triangulation
method.

Speed Estimation For the motion-based risk indicators (e.g., abrupt halts,
fast approach), we estimate the surrounding vehicles’ speed using frame-to-
frame centroid displacement. This part is based on the object bounding boxes
produced by YOLOvVS. For each detected vehicle in a frame, we compute the
centroid of its bounding box to track its position across time. The bounding
box coordinates are represented as (x1,y;) for the top-left corner and (x2,y2)
for the bottom-right corner. The centroid (cg,c,) of the bounding box is com-
puted as ¢, = % and ¢, = yl;yz. To estimate the object’s movement be-
tween two frames, we calculate the Euclidean distance between centroids as
Aspixels = /(cz(t) — ca(t—=1))2 + (cy(t) — ¢y (t—1))2. Here, (c4(t),cy(t)) is the
centroid in the current frame ¢, and (c;(t—1),c¢,(t—1)) is the centroid in the
previous frame t—1.
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To convert this pixel displacement into a real-world speed estimate, we use:

AS' 1
Speed,,,,, = 2.24 - S - f 1
PECmph (pixelspermeter bs (1)

, where pixels per meter = 30 (scale factor), fps = 5 (frame rate), and 2.24
converts speed from m/s to mph.

If a vehicle slows down from > 35 mph to < 3mph within 1-2 frames, a
possible accident is detected and passed to the risk assessment module. This
speed tracking helps detect abrupt changes that could indicate a collision or
hazard. The complete methodology for speed estimation is shown in Fig. 3.
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Fig.3: Objects are detected and tracked frame-by-frame using YOLOvS8. The
speed is calculated from the movement of bounding box centroids, and unusual
speed patterns are flagged as potential risks.

3.3 Driver Behavior Analysis

We use a CNN trained on the State Farm dataset to classify driver behavior into
10 categories. The architecture includes three convolutional layers followed by
fully connected layers. It captures spatial features and performs well in recog-
nizing behaviors such as “safe driving,” “drinking,” and “texting” (Fig. 4).
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Fig.4: CNN architecture for driver behavior classification. The pipeline includes
preprocessing, convolutional layers with ReLU, pooling, dropout, and fully con-
nected layers with softmax for classifying 10 behavior types.
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3.4 Accident Risk Prediction & Report Generation

We use an LSTM model to capture temporal patterns in driver behavior, speed,
and proximity. Input sequences consist of five-frame windows grouped by vehicle
ID, enabling risk prediction based on recent motion and behavior history. The
model outputs a normalized risk score in [0, 1], which is mapped to five risk levels.
If the score exceeds a threshold, a report is generated with vehicle location and
event summary. See Fig. 5 for details.
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Fig. 5: LSTM-based accident risk prediction pipeline. Input features are grouped
by Frame ID and Vehicle ID, then processed into 5-step sequences using a sliding
window. The LSTM module outputs a risk score in [0, 1], which is mapped to
five discrete risk levels from Very Low to Critical

4 Experimental Results

We evaluate our real-time accident risk prediction framework across five key
components: object detection, depth estimation, speed estimation, driver be-
havior classification and temporal risk prediction. Experiments were conducted
using the subsets of the DrivingStereo and State Farm datasets, descrived in
Section 3.1

4.1 Object Detection

We compared YOLOv8 and Faster R-CNN [14] for vehicle detection on the
stereo image dataset used for depth and speed estimation. YOLOvS8 achieved
an average inference time of 0.015 seconds per image-over 18 times faster than
Faster R-CNN making it more suitable for real-time use (Fig. 6) Although Faster
R-CNN showed slightly better accuracy in some cases, YOLOvVS provided clearer
and more consistent detections with a lower latency and a smaller model size.
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We selected YOLOvVS for its speed and practicality. Detection was applied
to both stereo frames, enabling integration with downstream depth estimation.
Fig. 7 illustrates sample vehicle detections.

YOLOV vs Faster R-CNN - Inference Time Comparison

Fig.6: The bar chart shows that YOLOv8 achieves lower inference times
(~0.015s) across all images compared to Faster R-CNN (~0.25-0.34s).

Detected Vehicles with Bounding Boxes
—— —

Fig. 7: Detected vehicles using YOLOv8 with confidence scores of 0.76 and 0.68
for car and truck classes, respectively.

4.2 Depth & Speed Estimation

Depth Estimation. We benchmarked four methods for depth estimation:
Stereo SGBM, MiDaS (Monocular Transformer-based), SIFT + Triangulation,
and Stereo Block Matching. Table 1 summarizes their performance. MiDaS of-
fered deployment ease but lacked geometric reliability; SIFT + Triangulation
was computationally heavy. Stereo SGBM provided the best balance of accuracy,
runtime, and geometric consistency, making it suitable for real-time applications.
Fig. 8 shows result of depth calculation for a frame generated from the dataset.

Speed Estimation We experimented with four speed estimation methods: Cen-
troid Tracking, Vision-Based Estimation, Optical Flow and Background Sub-
traction. Centroid Tracking provided consistent results in clear visibility but
was sensitive to occlusion. Vision-Based Estimation used object scale and frame
rate but required calibration and consistent viewpoints. Optical Flow captured
motion dynamics well but was affected by camera and background movement.
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Depth

Table 1: Comparison of Depth Estimation
Methods

Method Abs Rel ||RMSE |6 < 1.25 1 - ’

Stereo SGBM 0.11 3.4 85.2% pommmememmm ’

MiDaS Monocular 0.16 5.1 71.3% - . - ’

PIET o Triangu] 019 6T 1 6857 pip 5 Stereo SGBM dispar-

StereoBM 0.22 7.5 62.1% | ity map sample: two vehi-
cles detected at 96.35 ft and
128.01 ft.

Background Subtraction worked efficiently in static scenarios but failed in dy-
namic environments. After comparing performance across accuracy and com-
putational cost, we selected Centroid Tracking as the preferred method. Fig. 9
shows result of speed estimation on one of the frames.

Fig.9: Speed estimated as 40.1 mph and 30.3 mph for the two detected cars with
confidence score as 0.76 and 0.72 respectively

4.3 Driver Behavior Classification

Multiple architectures were evaluated for driver behavior classification. The
CNN-based model demonstrated the best performance for real-time deployment.
Table 2 summarizes the comparative results across accuracy, precision, recall,
and Fl-score.

Table 2: Comparison of Driver Behavior Analysis Methods

Method Accuracy|Precision|Recall|F1-Score
CNN-based Classification 92.3% 91.7% [92.0%| 91.8%
LSTM-based Temporal Modeling 86.5% 85.0% | 86.2% | 85.4%
Transformer + Pose Estimation 90.8% 92.1% |88.9% | 90.4%
Transformer over Temporal Features| 91.5% 90.3% [91.6% | 90.9%
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4.4 Risk Prediction and System Integration

Our LSTM-based module accurately predicted high-risk scenarios involving sud-
den braking, close following, and distracted driving. To demonstrate full system
integration, we developed an interactive Streamlit dashboard that simulates the
entire pipeline. More details are available on our project page:
https://sites.google.com/view /real-time-accident-prediction, .

5 Conclusion

Our proposed Be Safe on the Road framework improves traditional vehicle safety
systems by introducing a deep learning system that predicts accident risk in
advance. By combining stereo-based depth estimation and speed estimation,
along with driver behavior analysis, the system provides a better risk assessment
pipeline. This enables early warnings about possible risks and provides timely
alerts to prevent accidents before they occur.

While the current system is vision-based, future work will explore incorporat-
ing additional sensor modalities such as LiDAR, RaDaR, and biometric inputs
to improve accuracy and adaptability across diverse driving conditions.
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