
The Impact of Prompt Engineering on
LLM-Synthesized Behavior Trees

Nurun Naher[0000−0001−7974−6742] and Gita Sukthankar[0000−0002−6863−6609]

University of Central Florida, Orlando, FL USA

Abstract. Behavior modeling is essential for building realistic train-
ing and simulation environments, covering everything from individual
actions to complex team behaviors. This paper investigates using large
language models (LLMs) to streamline the creation of behavior trees,
a popular method for controlling AI character actions. We demonstrate
that by using specific prompting techniques, we can ensure the LLM
generates syntactically valid behavior trees, even when using higher tem-
perature settings to encourage creativity. We also examine how different
prompts influence the action diversity and depth of the generated be-
havior trees. Ultimately, our work aims to leverage LLMs to create a
more efficient and scalable process for developing complex AI behaviors,
thereby enhancing the realism of training simulations.

Keywords: behavior trees · training simulations · LLMs

1 Introduction

Recent advances in large language models (LLMs) have shown promise in stream-
lining the development of complex game AI behaviors, offering a potential break-
through in generating behavior tree libraries that accurately model military tac-
tics, techniques, and procedures. Behavior trees [4] are a valuable framework
for modeling doctrinal behavior, and integrating LLMs with behavior trees has
made generating complex AI behaviors more efficient and accessible. These mod-
els bridge the gap between expert-driven authoring and user-friendly AI gener-
ation, reducing authoring complexity and costs.

This paper describes a system that uses an LLM to generate behavior trees.
To do this, it leverages information from training manuals with a technique
called Retrieval Augmented Generation (RAG) [7]. The system also uses a fine-
tuned adapter, created with LoRA (Low Rank Adaptation) [3], to specialize in
generating these behavior trees.

Behavior Trees (BTs) have been widely adopted in games and simulations
for controlling non-player characters (NPCs) and other intelligent agents; they
have many advantages as a programming formalism including strong support for
task hierarchies, sequences, fallbacks, and reactivity. Originally, programmers of
game AI commonly used finite state automata (FSA) to script the behaviors of
non-player characters. However, the transition logic of FSAs is distributed across
states, making them unwieldy to understand and maintain. In contrast, behavior



2 Naher and Sukthankar

trees possess a more modular structure in which the leaves are execution nodes,
and non-leaf nodes govern the tree’s control flow. Figure 1 shows an example be-
havior tree generated by our system. We compared a simple, generic prompt with

Fig. 1: An example behavior tree generated by our system with user prompt
“Create a behavior tree for a tank patrol mission that includes reconnaissance,
threat assessment, and engagement protocols.”

a more specific one that included details about a behavior tree’s structure. Our
evaluation, which was conducted at various LLM temperature settings, showed
that the specific prompt consistently created deeper, more complex behavior
trees with fewer errors. While the generic prompt produced a wider variety of
action types at lower temperatures, it also resulted in more syntactical errors.
This next section provides an overview on related work on the application of
LLMs to behavior tree generation and military planning.

2 Related Work

2.1 LLMs for Behavior Tree Generation

LLMs can greatly simplify the behavior tree authoring process, since unlike the
other machine learning approaches, they don’t require example demonstrations.
Recent research [1,9,10,8] has demonstrated that LLMs can be effective at gen-
erating behavior trees for robotic applications. The general methodology for
training a large language model (LLM) to generate behavior trees is as follows:
1) select an instruction-following or code generation LLM, 2) harvest a dataset
of behavior trees from online code repositories, 3) use parameter-efficient fine
tuning (e.g., LoRA) to learn a specific adapter, 4) experiment with different
prompting techniques, 5) evaluate the generated behavior trees using metrics like



The Impact of Prompt Engineering on LLM-Synthesized Behavior Trees 3

syntactic correctness. Li et al. (2024) [8] provide an excellent high-level overview
of this process, along with proposing a method for generating synthetic behavior
tree data for fine-tuning using Monte Carlo Tree Search.

Our research builds on the work of Izzo et al. (2024) [5] who published an open
source implementation of their robotic behavior tree generation system, BTGen-
Bot. They created several different fine-tuned versions of Llama using a dataset
of 600 BTs paired with natural language descriptions. Both the LlamaChat and
CodeLlama versions are successful at the simpler robot tasks, assuming that
one shot prompting is used and the behavior trees are corrected post-generation
using basic static analysis. This research demonstrates that fine-tuning LLMs
specifically for BT tasks can significantly improve the effectiveness of the gener-
ated behaviors.

2.2 LLMs and Military Doctrine

While machine learning excels at creating optimized behaviors, less attention
has been given to developing behaviors that align with military doctrine. LLMs
are a promising direction for this task because of their ability to directly “read”
warfighter manuals and generate instructions based on what they’ve read. Goecks
and Waytowich (2024) [2] explored the usage of LLMs to expedite the develop-
ment of Courses of Action (COAs) for military operations. By incorporating
domain expertise through in-context learning, COA-GPT allows commanders to
input mission-specific details and receive rapidly generated COAs. The system
also enables real-time refinement of COAs based on human feedback, enhancing
both adaptability and alignment with the commander’s objectives. COA-GPT
uses the GPT-4 model to generate multiple COA options based on a detailed
prompt. These options were then refined through human feedback and tested
for strategic efficacy in StarCraft II measuring performance through reward
scores, casualties, and response times. In a military-relevant scenario, COA-GPT
demonstrated its ability to generate COAs more effectively than expert humans
and state-of-the-art reinforcement learning algorithms. The system’s real-time
adaptability to battlefield dynamics highlights its potential to revolutionize mil-
itary decision-making processes.

SC-Phi2 [6] relies on extensive fine-tuning to generate StarCraft build orders.
In the first stage of fine tuning, the Phi-2 LLM is trained on a question-answer
text dataset to correctly answer questions about the StarCraft 2 game. In the
second phase, the model is trained to predict build orders from StarCraft game
play. SC-Phi2 also leverages visual data of the map to construct a dynamic
prompt that includes the current game state in the context provided to the
LLM for build order prediction. In contrast, our system uses human-readable
documents from the Army sources and FEMA rather than training data. We are
investigating solutions to BT generation that build on a common architecture
but can be fed appropriate doctrine for the specific simulation domain, and tuned
using BTs related to that domain. A common solution could be applied to air
or ground for crew, entity semi-automated forces, and constructive simulations.



4 Naher and Sukthankar

3 Method

Fig. 2: Our LLM-based behavior tree generation system. Unlike previous work,
our system uses RAG to directly leverage existing publicly available military
documents.

We have developed a system that leverages LLMs coupled with LoRA adapters
to generate both military and emergency management behavior trees, combin-
ing doctrinal knowledge with AI to create sophisticated tactical decision-making
structures. Figure 2 shows the system architecture. Our base LLM is llama 3.3-
70B-instruct, which we run locally on our GPU cluster. We fine-tuned a set
of adapters using the BTGenBot dataset [5] to customize the model to output
syntactically correct behavior trees. Due to the lack of training examples on
military and emergency management doctrine, we provide the model with a vec-
tor database containing publicly available training manuals. This serves as the
basis for our Retrieval-Augmented Generation (RAG) pipeline, which is crucial
for incorporating military doctrine into our behavior tree generation. For each
scenario, the system:
1. Retrieves relevant documents from the vector database based on the user

prompt
2. Constructs an enhanced prompt by combining the system prompt, context

retrieved from the doctrine database, and the user prompt
3. Generates a behavior tree using the LLM model with the fine tuned adapters
4. Performs a syntactic check on the behavior tree

The LLM-generated behavior trees must be manually verified by the human
programmer to ensure that the LLM did not hallucinate states and actions that
don’t exist within the training simulation.



The Impact of Prompt Engineering on LLM-Synthesized Behavior Trees 5

4 Results

This paper evaluates the performance of different prompting strategies at gen-
erating syntactically correct behavior trees at higher temperature settings. In
LLM API calls, temperature is a critical parameter that controls the creativity
of the generated text. By setting the temperature to zero, it forces the model
to act as a greedy decoder that chooses the word with the highest predicted
probability.
RQ1: How does raising the LLM temperature affect behavior tree generation?
RQ2: Can using a more detailed prompt mitigate syntactic problems caused by

higher temperature settings?

Generic Prompt

[INST] «SYS» You are an emergency response planning AI. Generate a
behavior tree in strictly valid XML format that models an emergency
response plan. The tree should represent actions and decisions typically
required in crisis management. «/SYS»
Use the following context about emergency response behavior trees:
{context}
Now, based on this context, generate a behavior tree in XML format for:
{prompt}
The output should be a valid XML tree. [/INST]

Our prompt is composed of a standard system prompt that describes the
domain, a user-provided prompt, additional context added from the RAG docu-
ment retrieval, and some final output instructions. We evaluated the performance
of a generic prompt that includes less information about the correct BT syntax
vs. a specific prompt that contains additional specifications about the BT. Note
that the LLM plus LoRA adapter can generate syntactically correct BTs even
without special prompting, since it was fine-tuned on a dataset of 600 BTs.

We evaluate the complexity of the behavior trees by measuring the depth
and also the diversity of actions contained within the tree. Figure 3 shows our
analysis of how LLM temperature affects depth and action diversity of the gen-
erated behavior trees. Temperature did not have an effect on the depth of the
generated behavior tree; however using a more specific prompt with additional
specifications results in deeper trees, at all but the lowest temperature setting.
Interestingly, increasing the temperature decreased action diversity; at lower
temperature settings using the generic prompt increased action diversity. Thus
we conclude that increasing the LLM temperature is not necessary for improving
the complexity or action diversity of specific behavior trees. However, in cases
where the aim is to generate multiple different behavior trees for the same sce-
nario, increasing the LLM temperature is critical. Figure 4 (left) shows the effect
of temperature on the Jaccard coefficient over the entire set of BTs, generated
using the same prompt. The Jaccard coefficient of two sets, A and B, is defined
as J(A,B) = A∩B

A∪B ; it is a statistical measure commonly used to gauge similarity



6 Naher and Sukthankar

between two sets. Unsurprisingly, as the temperature decreases, the LLM is more
likely to generate the same BT in response to the same prompt.

Finally we attempted to characterize the most common types of syntactic
errors. The specific prompt was very successful in eliminating syntactic errors.
Figure 4 (right) shows the distribution of errors in BTs generated using the
generic prompt. High temperatures results in incorrect XML wrappers, with
mismatched tags surrounding the BT. Lower temperatures seemed to occasion-
ally result in the inclusion of plain non-XML text. Mid-range temperatures were
more likely to generate smaller, less easily categorized errors.

Specific Prompt

[INST] «SYS»
You are an emergency response planning AI. Your role is to help
emergency management teams develop behavior trees (BTs) for handling
emergency scenarios such as fires, earthquakes, hazardous materials
spills, mass casualty incidents, or search and rescue operations. You
generate behavior trees that structure response actions, assign responsi-
bilities, and ensure safe and effective crisis management.«/SYS»
Use the following context about emergency response behavior trees:
{context}
Now based on this context generate a behavior tree in strictly valid
XML format for:
{prompt}
- Always contain a ‘<BehaviorTree ID=M̈ainTree>̈‘ tag inside the root
- Contain valid nested nodes such as ‘<Sequence>‘,‘<Fallback>‘, or
custom actions.
- Use well-formed and closed XML tags.
- Never include any explanation, description, or text outside the XML.
- Output only the XML and nothing else.[/INST]

Fig. 3: The effect of temperature and prompt on generated BT depth (left) and
action diversity (right). Mean and standard deviation are reported over ten runs.



The Impact of Prompt Engineering on LLM-Synthesized Behavior Trees 7

Fig. 4: The effect of temperature and prompt on Jaccard coefficient (left); Distri-
bution of syntactic errors for the generic prompt at different temperature levels
(right). (The specific prompt only produced a single syntactic error.)

5 Conclusion

Authoring the behaviors required to create a rich training environment popu-
lated by computer-generated forces is a labor-intensive programming task. The
integration of LLMs with behavior trees has made the process of generating
complex AI behaviors more efficient and accessible. These models help bridge
the gap between expert-driven authoring and user-friendly AI generation by re-
ducing authoring complexity and costs.

This paper analyzed how an LLM’s temperature setting affects the com-
plexity, diversity, and syntactic correctness of generated behavior trees (BTs).
LLM temperature does not affect the depth of the generated behavior trees.
However, using a more specific prompt consistently led to deeper trees, except
at the lowest temperature setting. Counterintuitively, increasing the tempera-
ture decreased the diversity of actions within a single BT. However, increasing
the temperature is crucial when the goal is to generate multiple, different be-
havior trees for the same scenario. Using a more detailed prompt that includes
more information about legal BT structure was effective at eliminating syntac-
tic errors. Our findings suggest that a lower temperature, combined with a more
detailed prompt, produces syntactically valid BTs, while maintaining a complex
tree structure.

Despite these advancements, challenges remain, such as the paucity of train-
ing data and the need for domain-specific expertise for fine-tuning complex be-
haviors. An LLM cannot fully generate behavior trees from military training
manuals without human intervention or example execution traces. This is be-
cause, despite detailed action descriptions, the manuals frequently omit specifics
about the crucial numeric environmental variables necessary for programming
condition nodes. Consequently, human input or example execution traces are re-
quired to complement the high-level material provided by the manual. However,
the potential to greatly reduce authoring time and costs balances these limita-
tions. Our long-term goal is for such a backend service to provide response BTs to
a front-end application, such as the Unreal Engine (UE) Editor, for integration
and testing in the simulation.



8 Naher and Sukthankar

Acknowledgments. This research was funded by LMCO. Paul J. Foster was
instrumental in shaping our research plan. We thank Justin Gifford, Steven
Grady, Abhinav Kotta, Ohm Patel, and David Umanzor for their work on the
BT generation architecture.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.

References

1. Cao, Y., Lee, C.G.: Behavior-tree embeddings for robot task-level knowledge.
In: 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). pp. 12074–12080. IEEE (2022)

2. Goecks, V.G., Waytowich, N.: COA-GPT: Generative pre-trained transformers for
accelerated course of action development in military operations. In: 2024 Interna-
tional Conference on Military Communication and Information Systems (ICMCIS).
pp. 01–10. IEEE (2024)

3. Hu, E.J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang, S., Wang, L.,
Chen, W.: LoRA: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685 (2021)

4. Iovino, M., Scukins, E., Styrud, J., Ögren, P., Smith, C.: A survey of behavior trees
in robotics and AI. Robotics and Autonomous Systems 154, 104096 (2022)

5. Izzo, R.A., Bardaro, G., Matteucci, M.: BTGenBot: Behavior tree generation for
robotic tasks with lightweight LLMs. arXiv preprint arXiv:2403.12761 (2024)

6. Khan, M.J., Sukthankar, G.: SC-Phi2: A fine-tuned small language model for Star-
Craft II build order prediction. Artificial Intelligence 5(4), 2338–2352 (Nov 2024)

7. Lewis, P., Perez, E., Piktus, A., Petroni, F., Karpukhin, V., Goyal, N., Küttler,
H., Lewis, M., Yih, W.t., Rocktäschel, T., et al.: Retrieval-augmented generation
for knowledge-intensive NLP tasks. Advances in Neural Information Processing
Systems 33, 9459–9474 (2020)

8. Li, F., Wang, X., Li, B., Wu, Y., Wang, Y., Yi, X.: A study on training and
developing large language models for behavior tree generation. arXiv preprint
arXiv:2401.08089 (2024)

9. Lykov, A., Dronova, M., Naglov, N., Litvinov, M., Satsevich, S., Bazhenov, A.,
Berman, V., Shcherbak, A., Tsetserukou, D.: LLM-MARS: Large language model
for behavior tree generation and nlp-enhanced dialogue in multi-agent robot sys-
tems. arXiv preprint arXiv:2312.09348 (2023)

10. Zhou, H., Lin, Y., Yan, L., Zhu, J., Min, H.: LLM-BT: Performing robotic adap-
tive tasks based on large language models and behavior trees. arXiv preprint
arXiv:2404.05134 (2024)


	The Impact of Prompt Engineering on LLM-Synthesized Behavior Trees
	Introduction
	Related Work
	Method
	Results
	Conclusion


